1) квадратное уравнение с модулем будет иметь не менее трех корней если прямая а проходит через вершину параболы -(x^2-6x-5) - это верхнее значение параметра,
а нижнее а=0.
находим вершину параболы, х0=-b/2a у нам b=6 a=-1 x0=3
Возьмем течение реки за х. Тогда течение реки по течению будет 8+х, а против течения 8-х. Теперь найдем время пути. Отправился он в 5 часов и вернулся в 10. Следовательно он плыл 5 часов. Но это с учетом его стоянки(3 часа он ловил рыбу) Значит, чтобы найти время пути, надо из 5 часов вычесть 3(время рыбалки) - время пути = 2часа.
Составим уравнение.
6/(8+x)+6(8-x) = 2(Мы выразили все время движения, сложив время на путь туда и обратно, поделив расстояние на скорость.)
6(8-x)+6(8+x)=2(8+x)(8-x)
48-6x+48+6x=128-2x^2
2x^2=32
x^2=16
x=4 (значение -4 не берем, т.к. скорость не может быть отрицательной.)
1) квадратное уравнение с модулем будет иметь не менее трех корней если прямая а проходит через вершину параболы -(x^2-6x-5) - это верхнее значение параметра,
а нижнее а=0.
находим вершину параболы, х0=-b/2a у нам b=6 a=-1 x0=3
y0=-9+5+18=14
значит а [0;14]
2) sqrt(x-1)=a+x x>=1
x-1=x^2+a^2+2ax
x^2+(2a-1)x+a^2+1=0
D>0 (2a-1)^2-4a^2-4>0 -4a-3>0 a<-3/4
3) 4x^2-15x+4a^3=0
x1=x2^2
x1*x2=a^3
x2^3=a^3 x2=a
15/4=x1+x2 15/4=a^2+a
4a^2+4a-15=0 a1=3/2 a2=-5/2
x^2-ax+(a-1)=0
x1^2+x2^2=(x1+x2)^2-2x1x2=17
a^2-2(a-1)=17
a^2-2a-15=0
a1=5 a2=-3
Возьмем течение реки за х. Тогда течение реки по течению будет 8+х, а против течения 8-х. Теперь найдем время пути. Отправился он в 5 часов и вернулся в 10. Следовательно он плыл 5 часов. Но это с учетом его стоянки(3 часа он ловил рыбу) Значит, чтобы найти время пути, надо из 5 часов вычесть 3(время рыбалки) - время пути = 2часа.
Составим уравнение.
6/(8+x)+6(8-x) = 2(Мы выразили все время движения, сложив время на путь туда и обратно, поделив расстояние на скорость.)
6(8-x)+6(8+x)=2(8+x)(8-x)
48-6x+48+6x=128-2x^2
2x^2=32
x^2=16
x=4 (значение -4 не берем, т.к. скорость не может быть отрицательной.)
ответ:4.