соберем члены, содержащие переменную слева, а числа справа. помня, что при переходе через знак равенства в противоположную сторону, знаки изменяются на противоположные.
(1/2)х+(1/2)х-(3/4)х-2х=17+1;
(-1 3/4)х=18
-1 3/4=-7/4
(-7/4)х=18
х=18/(-7/4)
х=-72/7
х=-10 2/7
Проверка. Подставим х= 72/7 в левую часть исходного уравнения. получим (1/2)*(-72//7)-(1/3)*(9/4)*(-72/7)-(1/3)*51)==(-36/7)+(54/7)-17=
(54-36-119)/7=-101/7;
подставим х= 72/7 в правую часть исходного уравнения. получим
Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.
Итого получаем: (8*12+18):(3-2)
Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.
Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.
2 1/4=9/4
Раскроем скобки.
(1/2)х-(1/3)*(9х/4)-(1/3)*51=2х-(1/2)х+1;
(1/2)х-(3х/4)-17=2х-(1/2)х+1;
соберем члены, содержащие переменную слева, а числа справа. помня, что при переходе через знак равенства в противоположную сторону, знаки изменяются на противоположные.
(1/2)х+(1/2)х-(3/4)х-2х=17+1;
(-1 3/4)х=18
-1 3/4=-7/4
(-7/4)х=18
х=18/(-7/4)
х=-72/7
х=-10 2/7
Проверка. Подставим х= 72/7 в левую часть исходного уравнения. получим (1/2)*(-72//7)-(1/3)*(9/4)*(-72/7)-(1/3)*51)==(-36/7)+(54/7)-17=
(54-36-119)/7=-101/7;
подставим х= 72/7 в правую часть исходного уравнения. получим
2*(-72/7)-(1/2)*(-72/7)+1=(-144+36+7)/7=-101/7
Решение верно.
ответ х= -10 2/7
( 8 * ( 12 + 18 ) ) : ( 3 - 2 )
Объяснение:
Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.
Итого получаем: (8*12+18):(3-2)
Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.
Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.