На заводе производится сплав, в котором на 2 кг алюминия приходится 1 кг никеля. 2 + 1 = 3 кг сплава.
Первая шахта: 60 рабочих; 5 рабочих часов в день; 2 кг алюминия или 3 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 60*5 = 300 часов. 1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля. Для 3 кг сплава требуется 1/3 часа на добычу 1 кг никеля и 1 час на добычу 2 кг алюминия. 1 час + 1/3 часа = часа.
Пропорция часа - 3 кг сплава 300 часов - Х кг сплава кг сплава ------------------------------------------ Вторая шахта: 260 рабочих, 5 рабочих часов в день, 3 кг алюминия или 2 кг никеля 1 рабочий за 1 час. Общее количество рабочих часов в день: 260*5 = 1300 часов. 1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля. 1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия. Для 3 кг сплава требуется 1/2 часа для добычи 1 кг никеля и 1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия. 1/2 часа + 2/3 часа = часа.
Пропорция часа - 3 кг сплава 1300 часов - Х кг сплава кг сплава
Обе шахты могут обеспечить завод металлом для получения кг сплава
Первая шахта: 60 рабочих; 5 рабочих часов в день;
2 кг алюминия или 3 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день: 60*5 = 300 часов.
1 час / 3 кг = 1/3 часа нужно, чтобы один рабочий добыл 1 кг никеля.
Для 3 кг сплава требуется
1/3 часа на добычу 1 кг никеля и
1 час на добычу 2 кг алюминия.
1 час + 1/3 часа = часа.
Пропорция
часа - 3 кг сплава
300 часов - Х кг сплава
кг сплава
------------------------------------------
Вторая шахта: 260 рабочих, 5 рабочих часов в день,
3 кг алюминия или 2 кг никеля 1 рабочий за 1 час.
Общее количество рабочих часов в день: 260*5 = 1300 часов.
1 час / 2 кг = 1/2 часа, чтобы один рабочий добыл 1 кг никеля.
1 час / 3 кг = 1/3 часа, чтобы один рабочий добыл 1 кг алюминия.
Для 3 кг сплава требуется
1/2 часа для добычи 1 кг никеля и
1/3 часа * 2 кг = 2/3 часа для добычи 2 кг алюминия.
1/2 часа + 2/3 часа = часа.
Пропорция
часа - 3 кг сплава
1300 часов - Х кг сплава
кг сплава
Обе шахты могут обеспечить завод металлом для получения
кг сплава
ответ: кг сплава.
Задание № 1:
Если x<−8 и y<−2, то неравенство их суммы верно x+y<−10.
ответ: да
Задание № 2:
Если x>4 и y>3, то верным неравенством их произведения будет xy>12, значит, xy>7 - неверно.
ответ: нет
Задание № 3:
Сложим неравенства: 5x+y<3x+7 и 3y−4x<11−7x.
Преобразуем каждое неравенство:
1) 5x+y<3x+7 => 5x+y-3x<7 => 2x+y<7
2) 3y−4x<11−7x => 3y−4x+7x<11 => 3x+3y<11
3) А теперь их сложим:
2x+y<7
+
3x+3y<11
5x+4y< 18
Oтвет: 5x+4y<18
Задание № 4:
Неравенство 2x²+5>0 при любых значениях x верно, т.к.
x²≥0 при любых значениях x верно
5>0
Сумма неотрицательного и положительного чисел всегда положительна , т.е. 2x²+5>0 при любых значениях x.
ответ: да
Задание № 5:
Сумма расстояний от любой точки, лежащей внутри треугольника, до его вершин больше периметра треугольника.
Это утверждение неверно, т.к. сумма расстояний от любой точки, лежащей внутри треугольника, до его вершин меньше периметра треугольника
ответ: нет
Задание № 6:
Известно, что a>b. Расположите в порядке возрастания числа: a+7, b−4, a+3, a, b−1, b.
ответ: b−4; b−1; b; a; a+3; a+7
Задание № 7:
Если a и b - положительные числа, причем a>b, то верно неравенство a²>b².
Докажем.
a²>b²
a²-b²>0
(a+b)(a-b)>0
1) (a+b)>0 верно, т.к. по условию a и b - положительные числа, значит, их сумма положительна
2) Из условия a>b => a-b>0
3) Произведение положительных чисел тоже положительно, т.е.
(a+b)(a-b)>0 или a²>b².
ответ: да