сегодня. Объясните доступно. ответ есть . Игорь страховал свою гражданскую ответственность три года. В течение первого года была сделана одна страховая выплата, после этого выплат не было. Какой класс будет присвоен Игорю на начало четвёртого года страхования?
y = f(x)
f'(x) = (x^2 + 10x + 25)' * (2x - 10) + (x^2 + 10x + 25) * (2x - 10)' + 9' =
= (2x + 10 + 0) * (2 - 0) + (x^2 + 10x + 25) * (2 - 0) + 0 =
= 2*(2x+10) + 2(x+5)^2 = 4(x+5) + 2(x+5)^2 = 2(x+5)(2 + x + 5) =
= 2(x+5)(7+x) - производная нашей функции, приравниваем её к нулю:
2(x+5)(7+x) = 0
x+5 = 0 и 7+x = 0
x = -5 x = -7
Отмечаем полученные корни на координантной прямой:
+ - + x
оо>
-7 -5
Точка максимума - это x=-7, так как производная f'(x) возрастает до -7, а потом убывает. Точка x=-5 - точка минимума.
y=(-7+5)^2(-7-5) + 9 = 4*(-12) + 9 = -48 + 9 = -39
Получается, что в точке (-5;-39) эта функция достигает своего максимума.
1) точки пересечения
x^3=x
x^3-x=0
x(x^2-1)=0
x=0
x^2=1 x=-1 x=1
так как эти точки принадлежат прямой у=х то в них у=х
то есть (-1,1) (0,0) (1,1)
2) рассмотрим интервалы x<-1 -1<x<0 0<x<1 x>1
если х будет > х^3 значит прямая будет выше
2.1) x<-1 возьмем х из этого интервала например х=-2
x^3=-8
x>x^3 значит на этом интервале прямая выше
2.2) -1<x<0 например х=-0,5
x^3=-0,125 x<x^3 прямая ниже
2.3) 0<x<1 например х=0,5
x^3=0,125 x>x^3 прямая выше
2.4) x>1 например х=2
x^3=8 x<x^3 прямая выше
таким образом
прямая выше при x<-1 и при 0<x<1
Объяснение: