ответ:да, но я не уверена но хочу Я учусь на домашнем обучении уже 3 года! Это мои записи как решать такие примеры)
Объяснение: Ранее, познакомившись с понятием одночленов, мы были вынуждены констатировать, что при сложении одночленов, которые не являются подобными, в сумме получается больше одного слагаемого.
Многочленом называется сумма одночленов.
Многочленом является 32−7.
Многочленом также является 32+(−7)=32−7.
Одночлены, из которых состоит многочлен, называются членами многочлена.
Членами многочлена 22+3−2 являются 22, 3 и −2.
Записать коэффициенты и степени членов многочлена 42−+12.
Члены многочлена
42
−
12
Коэффициенты членов
4
−1
12
Степени членов
3
2
0
Если коэффициент не указан, его значение равно 1.
Члены многочлена называются подобными, если их переменные множители равны.
Подобные члены многочлена складываются, при сложении подобных членов их коэффициенты складываются.
Подобными членами многочлена 32+22−2+2+4−3 являются 32;22;2.
Подобными являются также 4 и −3, у которых переменных множителей вообще нет.
Сложив все подобные члены многочлена, получаем:
32⎯⎯⎯⎯⎯⎯⎯⎯+22⎯⎯⎯⎯⎯⎯⎯⎯−2+2⎯⎯⎯⎯⎯⎯+4−3 = 62−2+1
(легче выполнять действия, если подчеркнуть подобные члены).
Многочлен записан в стандартном виде, если все подобные члены сложены и записаны в стандартном виде.
Записать многочлен 6+102−6⋅+32−4 в стандартном виде:
1. записываются члены многочлена в стандартном виде.
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
ответ:да, но я не уверена но хочу Я учусь на домашнем обучении уже 3 года! Это мои записи как решать такие примеры)
Объяснение: Ранее, познакомившись с понятием одночленов, мы были вынуждены констатировать, что при сложении одночленов, которые не являются подобными, в сумме получается больше одного слагаемого.
Многочленом называется сумма одночленов.
Многочленом является 32−7.
Многочленом также является 32+(−7)=32−7.
Одночлены, из которых состоит многочлен, называются членами многочлена.
Членами многочлена 22+3−2 являются 22, 3 и −2.
Записать коэффициенты и степени членов многочлена 42−+12.
Члены многочлена
42
−
12
Коэффициенты членов
4
−1
12
Степени членов
3
2
0
Если коэффициент не указан, его значение равно 1.
Члены многочлена называются подобными, если их переменные множители равны.
Подобные члены многочлена складываются, при сложении подобных членов их коэффициенты складываются.
Подобными членами многочлена 32+22−2+2+4−3 являются 32;22;2.
Подобными являются также 4 и −3, у которых переменных множителей вообще нет.
Сложив все подобные члены многочлена, получаем:
32⎯⎯⎯⎯⎯⎯⎯⎯+22⎯⎯⎯⎯⎯⎯⎯⎯−2+2⎯⎯⎯⎯⎯⎯+4−3 = 62−2+1
(легче выполнять действия, если подчеркнуть подобные члены).
Многочлен записан в стандартном виде, если все подобные члены сложены и записаны в стандартном виде.
Записать многочлен 6+102−6⋅+32−4 в стандартном виде:
1. записываются члены многочлена в стандартном виде.
6+102⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯−6⋅⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯+32−4=6+103−63+32−4=
2. Находятся подобные члены.
=6⎯⎯⎯⎯+103⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯−63⎯⎯⎯⎯⎯⎯⎯⎯+32−4⎯⎯⎯⎯=
3. Вычитаются (cуммируются) подобные члены многочлена 6−4=2 и 10−6=4.
=2+43+32=
4. Члены многочлена можно упорядочить в порядке убывания степеней:
=43+32+2.
Степенью многочлена в стандартном виде называется наибольшая из степеней входящих в него одночленов.
Определить степень многочлена 342−232+2−+2.
Члены многочлена
342 −232 12 −11 20
Степень членов многочлена
4+2=6
3+2=5
1+2=3
1+1=2 0
Данный многочлен является многочленом шестой степени.
Удачи!...
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше