V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
найти максимум, х∈(0, 40).
найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х
она равна 3х²-208х+2560
найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0
1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3=
=(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3=
=(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16
ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
вот как-то так...-))
y ' =(cosx+2x) ' =(cosx) ' +(2x)' =-sinx+2*(x)' = -sinx+2*1 =2 -sinx > 0, т.к. -1 ≤ sin x≤ 1 .
y ' >0 ⇒ функция возрастает (y ↑).
2) y =sin2x -3x.
y '=(sin2x -3x)' = (sin2x)' -(3x)' =(cos2x)*(2x)' -3*(x)' =(cos2x)*2*(x)' -3*1.=cos2x*2*1 -3=
2cos2x - 3 < 0 следовательно функция убывает (у ↓).
* * * -1≤cos2x≤1⇔ -2*1≤2*cos2x≤2*1 ⇔ -2 -3 ≤2cos2x -3 ≤2 -3 ⇔ -5 ≤2cos2x -3 ≤ -1 * * *
3) y =x² -5x +4 .
y '= (x² -5x +4 )' =(x²)' -(5x)' +(4)' =2x -5 +0 =2x -5.
y '=0⇒ 2x-5=0⇒ x =2,5.
функция убывает , если y ' < 0⇒2x -5.<0 ⇒2x <5⇒x<2,5 иначе .x∈ (-∞;2,5)
функция возрастает, если y ' <0 2x -5.>0 ⇒2x >5⇒x>2,5 иначе .x∈ (2,5 ;∞)
ответ: у ↓ , если x∈ (-∞;2,5) и y ↑ , если x∈ (2,5 ; ∞) .
y ' - +
2,5
y ↓ min y ↑