Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
2x≥5 x²-4x+9=0
x≥2.5 D=16-36= -20<0
x∈(-∞; +∞)
x∈[2.5; +∞)
x²-4x+9=(2x-5)²
x²-4x+9=4x²-20x+25
x² -4x² -4x+20x+9-25=0
-3x²+16x-16=0
3x²-16x+16=0
D=(-16)² -4*3*16=256 -192=64
x₁=(16-8)/6=8/6=4/3= 1 ¹/₃∉[2.5; +∞) - не корень уравнения
x₂=(16+8)/6=4
ответ: 4.
2) ОДЗ: 3x+8≥0 x²+3x+6≥0
3x≥ -8 x²+3x+6=0
x≥ - ⁸/₃ D=3² -4*6=9-24=-15<0
x≥ -2 ²/₃ x∈(-∞; +∞)
x∈[-2 ²/₃; +∞)
x²+3x+6=(3x+8)²
x²+3x+6=9x²+48x+64
x²-9x²+3x-48x+6-64=0
-8x²-45x-58=0
8x²+45x+58=0
D=45²-4*8*58=2025-1856=169
x₁=(-45-13)/16=-58/16= -29/8= -3 ⁵/₈∉[-2 ²/₃; +∞) - не корень уравнения
x₂=(-45+13)/16=-32/16= -2
ответ: -2.