С ВЕРОЯТНОСТЬЮ!
В классе случайным образом выбирают двух человек .Событие А заключается в том что выбрали двух мальчиков. Опишите словами событие Б противоположное событию А и найдите его вероятность, если известно ,что в классе 20 человек из которых 8 мальчиков .
Решение
Пусть скорость 2-ого велосипедиста х км/ч,
а скорость 1-ого велосипедиста (х+1) км/ч.
Тогда время, затраченное первым велосипедистом - 90/(х+1) ч,
а время, затраченное вторым велосипедистом - 90/х ч.
Составим уравнение:
90/(х+1)+1=90/х
(90х + х² + х — 90х + 90)/(х(х+1)) = 0
х² + х - 90 = 0
D = 1 + 4*90 = 361
x₁ = (- 1 + 1 9)/2 = 9
x₂ = (- 1 - 19)/2 = - 10 — не удовлетворяет условию задачи.
9 км/ ч - скорость 2-ого велосипедиста
1) 9 + 1 = 10 км/ч - скорость 1-ого велосипедиста
ответ: 10 км/ч; 9 км/ч.
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.