Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Объяснение:
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Выражения 6⋅a⋅y; 0,25x3; abbc; 8,43; 16c⋅(−12)d; 38x2y тоже являются одночленами.
При записи одночленов между числами и переменными знак умножения не ставится
(6⋅a⋅y = 6ay).
Одночленом также считается:
- одна переменная, например, x, т. к. x=1⋅x;
- число, например, 3, так как 3=3⋅x0 (одно число также является одночленом).
Некоторые одночлены можно упростить.
Упростим одночлен 6xy2⋅(−2)x3y, используя свойство умножения степеней:
am⋅an=am+n —
6xy2⋅(−2)x3y = 6⋅(−2)xx3y2y=−12x4y3
(числа перемножаются, а показатели у одинаковых букв складываются)...
Объяснение:
Запишем одночлен 10⋅12abbb в стандартном виде: 10⋅12abbb=5⋅2⋅12ab3=5ab3.