угол В=90, а sin90=1 16/1=8√3/sinA sinA =8√3/16=√3/2 угол А=60, значит угол С=180-(90+60)=30
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному. угол С=НВА=30 А=СВН=60
ответ: 3) ВС1=6 4) С=НВА=30 А=СВН=60
Объяснение: 3)Угол АВС=180-(60+80)=40 СС1-биссектриса АСВ, значит угол ВСС1=ВСА/2=80/2=40 ВСС1=СВС1, т.е. треуг. ВСС1 равнобедрен. с основанием ВС, т.е. ВС1=СС1=6
4) по т.синусов Стороны треугольника пропорциональны синусам противолежащих углов. 16/sinB=8/sinC=8√3/sinA
AC^2=AB^2+BC^2 (т.Пифагора) BC^2=16^2-8^2=192 BC=8√3
угол В=90, а sin90=1 16/1=8√3/sinA sinA =8√3/16=√3/2 угол А=60, значит угол С=180-(90+60)=30
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному. угол С=НВА=30 А=СВН=60
Объяснение:
1.Разложите на множители:
1) 144 – у²=(12-у)(12+у) 5) а²b² –???
2) 64х² – 49=(8х-7)(8х+7); 6) х¹⁸ – у²⁰=(x⁹-y¹⁰)(x⁹+y¹⁰)
3) 225х² – 121у²=(15х-11у)(15х+11у) 7) –16 + 100а⁶b⁸=(10a³b⁴-4)(a³b⁴+4)
4) 0,01m² – 0,0036n²=(0,1m-0.06n)(0.1m+0.06n)
2.Разложите на множители:
1) (5у – 8)²– 81=(5у – 8– 9)(5у – 8+ 9)=(5у – 17)(5у +1)
2) (8х – 3)² – (4х + 6)²=(8х – 3 – 4х - 6)(8х – 3+ 4х + 6)=(4x-9)(12x+3)
3.Решить уравнение:
1) х² – 169 = 0
(x-13)(x+13)=0 Произведение равно нулю, когда один из множителей равен нулю
x-13=0 или x+13=0
x=13 или x= -13. ответ: 13; 13.
2) 625 – 64у²= 0
(25-8y)(25+8y)=0
25-8y=0 25+8y=0
8y=25 8y= -25
y=3.125 y= -3.125
4. Докажите, что при любом натуральном n значение выражения (9n +8)² – 49 делится нацело на 3.
(9n +8)² – 49=(9n+8-7)(9n+8+7)=(9n+1)(9n+15)=3(9n+1)(3n+5)