Пояснення: Позначимо через 1 весь шлях, який мали пройти туристи. Розглядаємо умову про першого туриста: 1/2 км пройшов за 4 км/год, тоді відомо, що S=vt, де S- шлях, v - швидкість, t-час. -> t=S/v -> t_1=1/8 год=7.5 хв - час, який затратив перший турист на половину дороги. Аналогічно, на другу половину він затратив t_2=1/10=6 хв. Тобто весь час, який він затратив буде 7+6=13 хв
Так само рахуємо і для двох половинок другого туриста: t_3=1/12год=5 хв, t_4=1/6 год = 10 хв . В резкльтаті весь час 15 хв.
Порівняємо час першого і другого -> перший прийшов швидше
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Відповідь:
Пояснення: Позначимо через 1 весь шлях, який мали пройти туристи. Розглядаємо умову про першого туриста: 1/2 км пройшов за 4 км/год, тоді відомо, що S=vt, де S- шлях, v - швидкість, t-час. -> t=S/v -> t_1=1/8 год=7.5 хв - час, який затратив перший турист на половину дороги. Аналогічно, на другу половину він затратив t_2=1/10=6 хв. Тобто весь час, який він затратив буде 7+6=13 хв
Так само рахуємо і для двох половинок другого туриста: t_3=1/12год=5 хв, t_4=1/6 год = 10 хв . В резкльтаті весь час 15 хв.
Порівняємо час першого і другого -> перший прийшов швидше
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.