Каждая буква слова Кенгуру заменена одной из цифр 1,2,3,4,5,6. У 5-ая и 7-ая буква в слове кенгуру. Получившееся число не делится на 2, значит последняя цифра должна быть нечетным числом. Это может быть: 1, 3, 5. Получившееся число делится на 3: значит сумма чисел должна быть кратной 3. Подставим вместо У число 1 (другие числа могут идти в любом порядке): КЕНГУРУ=2345161, сумма чисел = 22 - не кратно 3 (22:3=7 целых 1 в остатке). Значит, У ≠1
Подставим вместо У число 3 (другие числа могут идти в любом порядке): КЕНГУРУ=1245363, сумма чисел = 24 - кратно 3 (24:3=8). Цифра 3 подходит под условия задачи. У=3
Подставим вместо У число 5 (другие числа могут идти в любом порядке): КЕНГУРУ=1234565, сумма чисел = 26 - не кратно 3 (26:3=8 целых 2 в остатке). Значит, У≠5.
Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
У 5-ая и 7-ая буква в слове кенгуру.
Получившееся число не делится на 2, значит последняя цифра должна быть нечетным числом. Это может быть: 1, 3, 5.
Получившееся число делится на 3: значит сумма чисел должна быть кратной 3.
Подставим вместо У число 1 (другие числа могут идти в любом порядке):
КЕНГУРУ=2345161, сумма чисел = 22 - не кратно 3 (22:3=7 целых 1 в остатке). Значит, У ≠1
Подставим вместо У число 3 (другие числа могут идти в любом порядке):
КЕНГУРУ=1245363, сумма чисел = 24 - кратно 3 (24:3=8). Цифра 3 подходит под условия задачи. У=3
Подставим вместо У число 5 (другие числа могут идти в любом порядке):
КЕНГУРУ=1234565, сумма чисел = 26 - не кратно 3 (26:3=8 целых 2 в остатке). Значит, У≠5.
ОТВЕТ: У=3
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.