Всего выбрать троих дежурных из десяти человек можно столькими первым дежурным может быть любой из десяти человек, вторым - любой из девяти оставшихся, третий - любой из восьми, но так как порядок не имеет значения, нужно еще разделить на 3*2*1, количество перестановок из трех человек, что считается по аналогии):
Теперь подсчитаем количество в которых все дежурные - женщины (это тоже самое, что и выбрать трех человек из семи):
Следовательно, вероятность равна:
Если округлить это число до тысячных, то получится 0,292.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
ответ: 0,292.
Всего выбрать троих дежурных из десяти человек можно столькими первым дежурным может быть любой из десяти человек, вторым - любой из девяти оставшихся, третий - любой из восьми, но так как порядок не имеет значения, нужно еще разделить на 3*2*1, количество перестановок из трех человек, что считается по аналогии):
Теперь подсчитаем количество в которых все дежурные - женщины (это тоже самое, что и выбрать трех человек из семи):
Следовательно, вероятность равна:
Если округлить это число до тысячных, то получится 0,292.