- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Вам не надо проверять все точки из указанных интервалов. Просто пользуйтесь алгоритмом. Если корень четной степени в числителе, то подкоренное выражение 12-x²-x≥0, х²+х-12≤0, решается методом интервалов. Разложили на множители (х-3)(х+4)≤0, дальше разбиваем числовую ось на интервалы и определяем знак на каждом из них, не перебирая, а одно число достаточно взять, чтобы указать знак на интервале, причем, не корень считать надо, а подкоренное выражение, то. что под корнем. Есть и другой без перебора. Я его вам предложил. Но вы не заинтересовались им.
-43 рис.
+ - +
Решением будет [-4;3]; Для знаменателя надо решить неравенство
х+3>0; x>-3, потом пересекаем эти два решения, и выходим на ответ. (-3;3]
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
Вам не надо проверять все точки из указанных интервалов. Просто пользуйтесь алгоритмом. Если корень четной степени в числителе, то подкоренное выражение 12-x²-x≥0, х²+х-12≤0, решается методом интервалов. Разложили на множители (х-3)(х+4)≤0, дальше разбиваем числовую ось на интервалы и определяем знак на каждом из них, не перебирая, а одно число достаточно взять, чтобы указать знак на интервале, причем, не корень считать надо, а подкоренное выражение, то. что под корнем. Есть и другой без перебора. Я его вам предложил. Но вы не заинтересовались им.
-43 рис.
+ - +
Решением будет [-4;3]; Для знаменателя надо решить неравенство
х+3>0; x>-3, потом пересекаем эти два решения, и выходим на ответ. (-3;3]