Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
Точно так же подставляем в .
По формуле приведения , поэтому:
А потому и является искомым периодом.
ответ: В)
3.68. a) -2;0. 3;5.
б) -10; -6. -1;3.
3.69. а) -5;25. 3;9.
б) 1;-17. -1;-17.
Объяснение:
подстановки.
a) x^2-y=4; (1)
y=x+2; (2)
(2) подставляем в (1)
x^2 - (x+2)=4;
x^2-x-2-4=0;
x^2-x-2-4=0;
x^2-x-6=0;по т. Виета
x1+x2=1;
x1*x2=-6;
x1=-2; x2=3.
x1=-2 подставляем в (2)
y=-2+2;
y1=0;
x2=3 подставляем в (2)
y=3+2;
y2=5.
б) x=y-4; (3)
y^2+3x=6; (4)
(3) подставляем в (4):
y^2+3(y-4)=6;
y^2+3y-12=6;
y^2+3y-12-6=0;
y^2+3y-18=0;
по т. Виета
y1+y2=-3; y1*y2=-18;
y1=-6; y2=3.
y1=-6 подставляем в (3)
x=-6-4;
x1=-10;
y2=3 подставляем в (3)
x=3-4;
x2=-1.
сложения.
а) x^2-y=0; (5)
2x+y=15; (6)
Складываем (5) и (6):
x^2+2x=15;
x^2+2x-15=0;
по т. Виета
x1+x2=-2; x1*x2=-15;
x1=-5; x2=3;
x1=-5 подставляем в (6):
2(-5)+y=15;
-10+y=15;
y=15+10;
y1=25;
x2=3 подставляем в (6):
2*3+y=15;
6+y=15;
y=15-6;
y2=9.
б) x^2-y=18; (7)
x^2+y=-16; (8)
Складываем (7) и (8):
x^2 + x^2=18+(-16);
2x^2=2;
x^2=1;
x1,2=±1;
x1=1 подставляем в (7)
1^2-y=18;
-y= 18-1;
y1= -17;
x=-1 подставляем в (7)
(-1)^2-y=18;
1-y=18;
y2=-17.