Розв’язати рівняння(2б): а)у/у-4 -у^2/у-4=0
в) х^2/х+3=9/х+3
2. розкласти на множники квадратний тричлен (2б):
Х^2-X-42.
3.Скоротити дріб(2б):
Х^2+11X+30/Х^2-36.
4. Розв’яжіть рівняння(6б):
а) 2(х+3)^2- 5(x+3)+2=0
b) x^4- 10x^2+ 9=0
d) 2x/х+1 + х/х-1=0
х=1 у= -2
Пошаговое объяснение:
Из второго уравнения получаем: (3х+у)= -2/ху
Подставляем в первое:
-2/ху (9х²+у²)=13
-18х/у -2у/х=13
-18х-2у²/х=13у
-18х²-2у²=13ху
18х²+13ху+2у²=0
Чтобы было проще, умножим обе части на 2!
(Приводим к формуле сокращенного умножения (х+у)²)
36х²+26ху+4у²=0
6²х²+2*6*2ху+2²у²= -2ху
(6х+2у)²= -2ху
2(3х+у)²= -ху
ху=-2(3х+у)²
Подставляем это во второе уранение:
-2(3х+у)² * (3х+у)=-2
(3х+у)³=1
3х+у=1
у=1-3х
Меняем у на вычисленное во втором уравнении:
х(1-3х) (3х+1-3х)=-2
х-3х=-2
-2х=-2
х=1
Вычисляем у подставив х=1 в выражение у=1-3х:
у=1-3
у= -2
Объяснение:
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .