Итак, в ЕBCF диагонали взаимно перпендикулярны, и каждая из диагоналей делит один из углов пополам (то есть ЕС - биссектриса BCF, FB - Биссектриса ЕВС.)
Рассматиривая последовательно пару треугольников КВС и FKC, убеждаемся в из равенстве (общий катет и прилежащий угол).
Потом аналогично устанавливаем равенство треугольников EBK и KBC.
И совсем просто отсюда следует, что и треугольник EKF равен BKC (по двум катетам)
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
Точка пересечения диагоналей - К.
Дальше сплошная "угломания" :)))
угол DBC = угол CAD (опираются на одну дугу)
угол CAD = угол EBD (стороны взаимно перпендикулярны)
угол BDA = угол BCA (опираются на одну дугу)
угол ECF = угол BDA (стороны взаимно перпендикулярны)
Итак, в ЕBCF диагонали взаимно перпендикулярны, и каждая из диагоналей делит один из углов пополам (то есть ЕС - биссектриса BCF, FB - Биссектриса ЕВС.)
Рассматиривая последовательно пару треугольников КВС и FKC, убеждаемся в из равенстве (общий катет и прилежащий угол).
Потом аналогично устанавливаем равенство треугольников EBK и KBC.
И совсем просто отсюда следует, что и треугольник EKF равен BKC (по двум катетам)
ПОэтому EF = BC = 1
EBCF - ромб.