Решите в целых числах уравнение x2−xy=x−y+1. Если решений несколько, каждое решение (x,y) введите в отдельное поле ввода, разделив числа пробелом (сначала x, потом y). Например, если решением является x=10, y=−9, то нужно ввести «10 -9» (без кавычек).
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Дима шел три часа при этом скорость его была больше 4км в час, но меньше 6км в час. Сколько км всего мог пройти Дима за это время?
Шёл время t=3ч
Скорость V >4 км/ч; V< 6км/ч
4Путь S=?
S=V•t
Наименьшее S>4•3
Наибольшее S<6•3
Записываем так
12
ответ: Дима мог пройти путь больше 12км и меньше 18км.
Действиями
1)) 3•4=12км путь но его скорость больше 4км/ч, значит 12км<чем
2)) 3•6=18км, путь, но скорость меньше чем 6км/ч, значит 18км> чем
от 12<путь<18
ответ: мог пройти больше 12 км и меньше 18 км.