Сначала нужно найти в этой дроби общий множитель (если он конечно есть), чтобы сократить дробь. Один множитель уже виден, это у. Дальше смотрим по числам. Для этого каждое число разлаживаем на множители, чтобы найти общий множитель.
Начнём с минимального числа:
7 - нельзя разложить. Поэтому ищем при разложении чисел на 7.
Исходная функция рассматривается лишь при икс из отрезка [-1;5]. dy/dx = 2x - 4. 2x-4 = 0, <=> x=2; 2x-4>0, <=> x>2; 2x-4<0, <=> x<2. На отрезке [-1;2] y(x) убывает. На отрезке [2;5] y(x) возрастает. Поэтому x=2 - это точка минимума. В силу непрерывности данной в условии функции она принимает все значения от y(2) до max{ y(-1); y(5) } (крайние точки включаются). y(2) = 2*2 - 4*2 - 7 = 4-8-7 = -4-7 = -11, y(-1) = 1 + 4 - 7 = 5-7 = -2; y(5) = 25 - 20 - 7 = 5-7 = -2. Область значений функции y(x) это [-11;-2].
у/3
Объяснение:
(42ху^(2)-7у^(3))/(126ху-21у^(2))
Сначала нужно найти в этой дроби общий множитель (если он конечно есть), чтобы сократить дробь. Один множитель уже виден, это у. Дальше смотрим по числам. Для этого каждое число разлаживаем на множители, чтобы найти общий множитель.
Начнём с минимального числа:
7 - нельзя разложить. Поэтому ищем при разложении чисел на 7.
42=7×6
126=7×18
21=7×3
Вид полученной дроби:
(7•6•х•у•у-7•у•у^2)/(7•18•х•у-7•3•у•у)=7у(6ху-у^2)/7у(18х-3у)=(6ху-у^2)/(18х-3у)
Теперь в числителе ищем общий множитель:
6•х•у-у•у=у(6х-у)
В знаменателе ищем общий множитель:
3•6•х-3•у=3(6х-у)
Вид полученной дроби:
у(6х-у)/3(6х-у)=у/3.
dy/dx = 2x - 4.
2x-4 = 0, <=> x=2;
2x-4>0, <=> x>2;
2x-4<0, <=> x<2.
На отрезке [-1;2] y(x) убывает.
На отрезке [2;5] y(x) возрастает.
Поэтому x=2 - это точка минимума.
В силу непрерывности данной в условии функции она принимает все значения от y(2) до max{ y(-1); y(5) } (крайние точки включаются).
y(2) = 2*2 - 4*2 - 7 = 4-8-7 = -4-7 = -11,
y(-1) = 1 + 4 - 7 = 5-7 = -2;
y(5) = 25 - 20 - 7 = 5-7 = -2.
Область значений функции y(x) это [-11;-2].