Решение: Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так: х/у Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение: (х+1)/(у+1)=1/2 Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение: (х-1)/(у-1)=1/3 Решим получившуюся систему уравнений: (х+1)/(у+1)=1/2 (х-1)/(у-1)=1/3 (х+1)=1/2*(у+1) Приведём к общему знаменателю 2 (х-1)=1/3*(у-1) Приведём к общему знаменателю 3 2х+2=у+1 3х-3=у-1
2х-у=1-2 3х-у=-1+3
2х-у=-1 3х-у=2 Вычтем из первого уравнения второе уравнение: 2х-у-3х+у=-1-2 -х=-3 х=-3 : -1 х=3 Подставим значение х=3 в первое уравнение: 2*3 -у=-1 -у=-1-6 -у=-7 у=-7 : -1 у=7 Отсюда: х/у=3/7
Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так:
х/у
Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение:
(х+1)/(у+1)=1/2
Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение:
(х-1)/(у-1)=1/3
Решим получившуюся систему уравнений:
(х+1)/(у+1)=1/2
(х-1)/(у-1)=1/3
(х+1)=1/2*(у+1) Приведём к общему знаменателю 2
(х-1)=1/3*(у-1) Приведём к общему знаменателю 3
2х+2=у+1
3х-3=у-1
2х-у=1-2
3х-у=-1+3
2х-у=-1
3х-у=2
Вычтем из первого уравнения второе уравнение:
2х-у-3х+у=-1-2
-х=-3
х=-3 : -1
х=3
Подставим значение х=3 в первое уравнение:
2*3 -у=-1
-у=-1-6
-у=-7
у=-7 : -1
у=7
Отсюда: х/у=3/7
ответ: Искомая дробь равна 3/7
---.---.---.---.---.---
Найдите область значения функции y = x / (x²+4)
----------------
1. ОДЗ: x∈( - ∞; ∞).
---
2.
y = x / (x²+4) _нечетная функция
* * * y(-x) = - x/ ( (-x)² +4) = -x / (x²+4) = - y(x) * * *
---
3.
x=0 ⇒ y =0
---
4.
y ' =( x / (x²+4) ) '=((x)' *(x² +4) - x*(x²+4)' )/(x² +4)² =(1*(x²+4) -x*(2x +0) ) / (x² +4)² =(4 -x² ) / (x²+4)² =(2+x) (2-x) / (x²+4)²
y ' " - " " +" " -"
------------ [-2 ] --------------- [2] ------------------
y ↓ min ↑ max ↓
min у =y(-2) = (-2) / ( (-2)² +4) = -2/8 = -1/4 = -0,25 .
max у =y(2) = 2 / ( 2² +4) = 2/8 =1/4 = 0,25 . * * * y(2) = -у(-2) =0,25 * * *
ответ : Е(у) ∈ [ - 0,25 ; 025]
дополнительно см. приложение ( - 2√3 ; 0 ;2√3 _ точки перегиба)