В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
РыбкаНемо
РыбкаНемо
20.01.2021 18:33 •  Алгебра

Решите системы уравнений графическим


Решите системы уравнений графическим

Показать ответ
Ответ:
omka02
omka02
13.05.2022 08:07

17.

Объяснение:

Найти значение выражения:

[у²/(у²-6уb)] : [y/(y²-36b²)]= 17                         при у=5-6√3;   b=2+√3.

В первом знаменателе вынести у за скобки, во втором знаменателе разность квадратов, развернуть:

=[у²/у(у-6b)] : [y/(y-6b)(у+6b)]=

Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:

=[y²*(y-6b)(у+6b)] / [у(у-6b)*y]=

Сокращение у, у и у²;   (y-6b) и (y-6b) на (y-6b):

=у+6b=

=5-6√3+6(2+√3)=

=5-6√3+12+6√3=

=5+12=17.

0,0(0 оценок)
Ответ:
Sonya45138
Sonya45138
08.08.2021 07:26

y = 2x^{3} - 3x^{2}

y' = (2x^{3} - 3x^{2})' = 6x^{2} - 6x

Необходимые условия экстремума:

y' = 0

6x^{2} - 6x = 0

6x(x - 1) = 0

\left[\begin{array}{ccc}x_{1} = 0\\x_{2} = 1\\\end{array}\right

Имеем две критические (стационарные) точки: x_{1} = 0 и x_{2} = 1

Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.

Если точка с абсциссой x_{0} меняет знак с "+" на "–" (двигаясь в направлении увеличения x), то x_{0}  — точка максимума, а если с "–" на "+" , то x_{0}  — точка минимума.

Из промежутка x \in (-\infty; \ 0) выберем, например, x = -1 и имеем: y'(-1) = 6 \cdot (-1)^{2} - 6\cdot (-1) = 6 + 6 = 12 0

Из промежутка x \in (0; \ 1) выберем, например, x = 0,5 и имеем: y'(0,5) = 6 \cdot (0,5)^{2} - 6\cdot 0,5 = 1,5 - 3 = -1,5 < 0

Имеем максимум в точке с абсциссой x_{\max} = 0

Из промежутка x \in (1; \ +\infty) выберем, например, x = 2 и имеем: y'(2) = 6 \cdot 2^{2} - 6\cdot 2 = 24 - 12 = 12 0

Имеем минимум в точке с абсциссой x_{\min} = 1

ответ: x_{\max} = 0, \ x_{\min} = 1

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота