В наше время неотъемлемым является знание нашего Ведь в какой-то мере, не зная нашего мы бы не знали кто мы. На протяжении веков формировалась культура, обычаи, происходили различные события, которые очень сильно повлияли на настоящее. В разные времена существовали свои летописцы, они записывали происходящие события, для себя, для людей и для потомков. Современному человеку интересны летописные сказания тем, что в них записаны данные, о которых мы бы не могли узнать, например: различные даты, войны, культурные просветители и деятели тех лет.
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
В наше время неотъемлемым является знание нашего Ведь в какой-то мере, не зная нашего мы бы не знали кто мы. На протяжении веков формировалась культура, обычаи, происходили различные события, которые очень сильно повлияли на настоящее. В разные времена существовали свои летописцы, они записывали происходящие события, для себя, для людей и для потомков. Современному человеку интересны летописные сказания тем, что в них записаны данные, о которых мы бы не могли узнать, например: различные даты, войны, культурные просветители и деятели тех лет.
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)