Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Тк делители должны быть простыми числами(иначе не соблюдение условия про отсутствие однозначных делителей) Возьмем на пример 11 - рассматривается делитель простой и не однозначный,но даже его квадрат трехзначный-а у нас не может быть трехзначного делителя.
Почему я рассматриваю квадрат?Потому что мы доказываем ,что делитель только один.Поэтому я взяла в пример 11 тк это самое маленько число подходящие под наш критерий делителей.Дальше по логике могли бы быть только простые числа большие 11.Например,число дел на 11 и на 13 =>делится на 143.Значит,двучзначный делитель может быть только один.
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.
1
Объяснение:
Тк делители должны быть простыми числами(иначе не соблюдение условия про отсутствие однозначных делителей) Возьмем на пример 11 - рассматривается делитель простой и не однозначный,но даже его квадрат трехзначный-а у нас не может быть трехзначного делителя.
Почему я рассматриваю квадрат?Потому что мы доказываем ,что делитель только один.Поэтому я взяла в пример 11 тк это самое маленько число подходящие под наш критерий делителей.Дальше по логике могли бы быть только простые числа большие 11.Например,число дел на 11 и на 13 =>делится на 143.Значит,двучзначный делитель может быть только один.