В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
hhhh34
hhhh34
12.01.2022 18:51 •  Алгебра

Решите систему уравнений
{2x-3y=5
{x-3y=2​

Показать ответ
Ответ:
Settiko
Settiko
24.05.2021 19:17
Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}},

где \underbrace{99...9}=k, a \underbrace{00...0}=m

Рассмотрим пример:

Дана бесконечная периодическая дробь 2,(25)

Итак, по формуле:

y - целая часть. У нас она равна 2

k- - количество цифр в периоде. У нас их 2

m- количество цифр до периода. У нас их 0

a-  все цифры, включая период, в виде натурального числа. У нас это 25

b- все цифры без периода в виде натурального числа. Их нет.

Итак, получаем:

y=2\\
k=2\\
m=0\\
a=25\\
b=0

Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=2+ \frac{25-0}{99}=2 \frac{2\cdot99+25}{99}= \frac{223}{99}

Необходимо отметить, что  под k подставляется количество 9, а под m -количество нулей. У нас k=2, значит пишем две цифры 9, а m=0, значит, нулей не пишем вообще. Между  k\ u\ m не стоит знак умножения

*****************************************

0,41(6)

y=0\\
k=1\\
m=2\\
a=416\\
b=41

Подставляем:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=0+ \frac{416-41}{900}= \frac{375}{900}= \frac{375:75}{900:75} = \frac{5}{12}

***************************************

3,6(020)

y=3\\
k=3\\
m=1\\
a=6020\\
b=6


Подставляем в формулу:

y+\frac{a-b}{\underbrace{99...9}\underbrace{00...0}}=3+ \frac{6020-6}{9990}= 3\frac{6014}{9990} = \frac{35984(:2)}{9990(:2)}= \frac{17992}{4995}
0,0(0 оценок)
Ответ:
Дако031204
Дако031204
28.01.2020 05:25
1) cosx≥0 - так как под корнем четной степени.
sinx≥0, так как иначе \sqrt[2017]{sinx} \ \textless \ 0, \sqrt[2018]{cosx} \leq 1, \sqrt[2017]{sinx} + \sqrt[2018]{cosx}\ \textless \ 1
Значит, решения могут быть только в I квадранте (включая границы).
2) Очевидно, что x1=2πn и x2=π/2+2πn являются решениями данного уравнения. В первом случае sinx=0, cosx=1, во втором sinx=1, cosx=0.
3) Покажем, что других корней быть не может.
Найдем производную функции 
f(x)=\sqrt[2017]{sinx} + \sqrt[2018]{cosx}
f'(x)=(\sqrt[2017]{sinx} + \sqrt[2018]{cosx})'= \frac{cosx}{2017\sqrt[2017]{sin^{2016}x} } -\frac{sinx}{2018\sqrt[2018]{cos^{2017}x} }
Так как x - в первом квадранте, то sinx постоянно возрастает, cosx постоянно убывает, значит "первая часть" в производной
\frac{cosx}{2017\sqrt[2017]{sin^{2016}x} }
постоянно убывает от +∞ (справа при стремлении к 0) до 0 (в π/2),
а "вторая часть"
\frac{sinx}{2018\sqrt[2018]{cos^{2017}x} }
постоянно возрастает от 0 (в 0) до +∞ при стремлении к π/2.
Это значит, что производная положительна до некого x_max на [0;x_max)
и отрицательна на (x_max;π/2], принимая одно нулевое значение в x_max на отрезке [0;π/2]
Так как на концах отрезка [0;π/2] рассматриваемая функция принимает значения, равные 1, во всех остальных точках отрезка [0;π/2] она принимает значения строго больше 1.
Следовательно, других корней исходного уравнения нет.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота