В данном примере проще оценить выражение(нужно понять, когда функция принимает минимальное и максимальное значение):
Меняется в этой функции только sin. sin(2-3x) принимает значения от -1 до 1, то есть минимальное значение у функции будет при sin(2-3x) = 1, а максимальное при sin(2-3x) = -1:
1. 6 - 4sin(2-3x) = 6 - 4*(-1) = 10
2. 6 - 4sin(2-3x) = 6 - 4*1 = 2
E(y) = [2; 10]
Есть более универсальный Оценить область значений можно с производной.
С её можно найти точки максимума и минимума, а после и сами значения функции в этих точках.
А если функция претерпевает разрыв (гипербола например), то производная найти "подозрительную точку". Понять, стремиться ли в этой точке функция к бесконечности можно с пределов (но они в школе изучаются в старших классах обычно). Поэтому опираются чаще на свойства функции (на примере гиперболы -- всегда ветви уходят вверх, к бесконечности) или стараются оценить подставляя некоторые значения х(но подставлять значения наугад -- не самый эффективный метод)
Объяснение:
Пусть скорость пешехода - х км/час
а скорость велосипедиста - y км/час
Длина пути от города до деревни : 30 км
1) Велосипедист выехал на 45 мин позже пешехода и был в пути 30 мин.
30 мин = 30/60 = 0,5 часа
Расстояние , которое проехал велосипедист составило : 0,5y км
Пешеход был в пути :
45 мин +30 мин= 75 мин
75 мин = 75/60= 1,25 часа
Расстояние , которое пешеход составило : 1,25х км
Велосипедист был позади пешехода на 2,5 км , значит можем составить первое уравнение :
1,25x -0,5y= 2,5 (1)
2) Велосипедист ехал еще 30 мин , значит общее время составило :
30 мин +30 мин = 1 час , а расстояние , которое он преодолел было :
1*y км
Время движения пешехода было : 75 мин. +30 мин= 105 мин
105 мин = 105/60= 1,75 часа, расстояние он преодолел : 1,75x км
При этом велосипедист был на 0,5 км от деревни дальше , чем пешеход . Можем составить второе уравнение:
1,75х - y =0,5 ( 2)
Получаем систему уравнений :
Домножим первое уравнение на 2
отнимем от первого уравнения второе
0,75х= 4,5
х= 4,5 : 0,75
х= 6 км/час - скорость пешехода
подставим значение х в любое уравнение и найдем y
2,5*6-y= 5
15-y= 5
y= 15-5=10 км/час - скорость велосипедиста
E(y) -- это область значений функции.
В данном примере проще оценить выражение(нужно понять, когда функция принимает минимальное и максимальное значение):
Меняется в этой функции только sin. sin(2-3x) принимает значения от -1 до 1, то есть минимальное значение у функции будет при sin(2-3x) = 1, а максимальное при sin(2-3x) = -1:
1. 6 - 4sin(2-3x) = 6 - 4*(-1) = 10
2. 6 - 4sin(2-3x) = 6 - 4*1 = 2
E(y) = [2; 10]
Есть более универсальный Оценить область значений можно с производной.
С её можно найти точки максимума и минимума, а после и сами значения функции в этих точках.
А если функция претерпевает разрыв (гипербола например), то производная найти "подозрительную точку". Понять, стремиться ли в этой точке функция к бесконечности можно с пределов (но они в школе изучаются в старших классах обычно). Поэтому опираются чаще на свойства функции (на примере гиперболы -- всегда ветви уходят вверх, к бесконечности) или стараются оценить подставляя некоторые значения х(но подставлять значения наугад -- не самый эффективный метод)