б) электроотрицательности - As, Ge, S, Cl, O, P, Mg
в) радиуса атома - I, Zr, S, As, F, Te, N
Задание №3
Расположите высшие гидроксиды стронция, йода, молибдена, циркония и сурьмы в порядке убывания их кислотных свойств. Объясните причину такого изменения свойств гидроксидов. Приведите пример аналогичного изменения свойств на примере гидроксидов одного металла.
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
Сколько спаренных и неспаренных электронов содержат эти атомы? Сколько неспаренных электронов содержат ионы Fe2+, Cu2+, As3- ?
Задание №2
Расположите элементы в порядке увеличения:
а) металлических свойств - Se, Li, Br, Rb, Cr, K, Sc
б) электроотрицательности - As, Ge, S, Cl, O, P, Mg
в) радиуса атома - I, Zr, S, As, F, Te, N
Задание №3
Расположите высшие гидроксиды стронция, йода, молибдена, циркония и сурьмы в порядке убывания их кислотных свойств. Объясните причину такого изменения свойств гидроксидов. Приведите пример аналогичного изменения свойств на примере гидроксидов одного металла.
Задание №4
Используя правило Гунда, приведите электронные и
сразу приношу извинения за невозможность нарисовать куб/не работает вложение/, но это совсем не сложно. откройте любой учебник. посмотрите, как он рисуется. дальше, т.к. сечение соединяет два противолежащих ребра куба, будет прямоугольником, (доказать легко- два противоположных ребра куба равны и параллельны и ребро куба перпендикулярно стороне, например, основания, т.е. квадрата, лежащего в основании, тогда оно перпендикулярно и диагонали квадрата - боковой грани по теореме о трех перпендикулярах. площадь этого сечения 64√2 см², пусть, сторона основания х, тогда диагональ боковой грани х√2 см, т.к. все стороны квадрата х, значит, х*х√2=64√2⇒х=8, значит, ребро куба 8 см, квадрат диагонали куба равен сумме квадратов трех его измерений, значит, диагональ куба равна х√3=8√3/см.
ответ 8 см, 8√3см