Решите Прочитайте задачу: «Длина участка прямоугольной формы больше его ширины на 10 м, а его площадь равна 119 м2. Каковы размеры участка?» Какое уравнение соответствует условию задачи, если буквой x обозначена ширина участка (в метрах)?
Выберите один ответ:
a. 2x+2(x+10)=119
b. x(x-10)=119
c. x(x+10)=119
d. 2x+2(x-10)=119
Объяснение:
(а^2 +4)/(а^2 -4) -а/(а+2)=(а^2 +4)/((а-2)(а+2)) -(а(а-2))/((а-2)(а+2))=(а^2 +4-а^2 +2а)/((а-2)(а+2))=(2(а+2))/((а-2)(а+2))=2/(а-2)
2/(2/3 -2)=2/(2/3 -6/3)=2/(-4/3)=2•(-3/4)=-3/2=-1,5 - при а=2/3
2/(-4-2)=2/(-6)=-1/3 - при а=-4
2/(2-2)=2/0 - выражение не имеет смысл, так как знаменатель не должен равняться 0 - при а=2.
(с^2 -25)/(10с) •с/(с-5)=((с-5)(с+5))/10 •1/(с-5)=(с+5)/10
(2,5+5)/10=7,5/10=0,75 - при с=2,5
(0+5)/10=5/10=0,5 - при с=0
(-37+5)/10=-32/10=-3,2 - при с=-37
m/(m-n) •((m-n)/m -1)=m/(m-n) •(m-n-m)/m=-n/(m-n)=n/(n-m)
(1/2)/(1/2 -1/4)=(1/2)/(2/4 -1/4)=1/2 •4/1=2 - при m=1/4; n=1/2
-18/(-18-(-15))=-18/(15-18)=-18/(-3)=6 - при m=-15; n=-18
10/(10-0)=10/10=1 - при m=0; n=10
0(0-10)=0 - при m=10; n=0
(х/у -у/х)•(ху)/(х-у)=(х^2 -у^2)/(ху) •(ху)/(х-у)=((х-у)(х+у))/(х-у)=х+у
12+(-15)=-3 - при х=12; у=-15
-2/3 +5/6=5/6 -4/6=1/6 - при х=-2/3; у=5/6
0+22=22 - при х=0; у=22
5+5=10 - при х=5; у=5
Свойства функции у = х²
1. Область определения D(y) = R.
2. Множество значений E(y) = [0; +∞).
3. Наибольшего значения нет, наименьшее значение у = 0 функция принимает в точке х = 0.
4. График функции пересекает оси координат в точке (0; 0).
5. Нуль функции - значение аргумента х = 0.
6. Функция принимает положительные значения на промежутках
(-∞; 0) ∪ (0; +∞). Отрицательных значений функция не принимает.
7. Функция возрастает на промежутке [0; +∞) и убывает на промежутке (-∞; 0].
8. Функция у = х² - четная, непериодическая.
График функции называется параболой.