Решите : красная прямая параллельна прямой у=(5-2х): 3 и проходит через такую точку на прямой 12у-7х=3, у которой абсцисса и ордината равны. в какой точке красная прямая пересекает ось ординат?
Линейная функция имеет формулу: y = kx + b прямая пропорциональность имеет формулу: y = kx т.к. по условию их графики параллельны, то их коэффициенты (k) равны.
уравнение прямой, проходящей через две точки, имеет вид: (x - x1) / (x2 - x1) = (y - y1) / (y2 - y1), где x1, x2, y1, y2 - координаты в данном случае x1 = 0, y1 = 2, x2 = 6, y2 = 0 тогда (x - 0) / (6 - 0) = (y - 2) / (0 - 2) x / 6 = (y - 2) / -2 | умножаем на 6 x = -3(y - 2) x = -3y + 6 6 - 3y = x 3y = 6 - x y = (6 - x) / 3 y = 2 - x/3 - линейная функция, её коэффициент k = -1/3
т.к. коэффициенты равны, то прямая пропорциональность имеет формула y = -x/3
(x+10)(x-10)=0
x+10=0
x1= -10
x-10=0
x2=10
x=±10
49-x²=0
(7-x)(7+x)=0
7-x=0
x1=7
7+x=0
x2= -7
x=±7
x² -7=0
(x-√7)(x+√7)=0
x-√7=0
x1=√7
x+√7=0
x2=-√7
x=±√7
x² -12=0
(x-√12)(x+√12)=0
x-√12=0
x=√12
x+√12=0
x2= -√12
x=±√12=±2√3
7x²-63=0
x²-9=0
(x-3)(x+3)=0
x-3=0
x1=3
x+3=0
x2= -3
x=±3
5x²-35=0
x² -7=0
(x-√7)(x+√7)=0
x-√7=0
x1=√7
x+√7=0
x2=-√7
x=±√7
64x²-25=0
(8x-5)(8x+5)=0
8x-5=0
8x=5
x1=5/8
8x+5=0
8x= -5
x2= -5/8
x=±5/8
2x²-50=0
x²-25=0
(x-5)(x+5)=0
x-5=0
x1=5
x+5=0
x2= -5
x=±5
6x²-30=0
x²-5=0
(x-√5)(x+√5)=0
x-√5=0
x1=√5
x+√5=0
x2= -√5
x=±√5
25x²-81=0
(5x-9)(5x+9)=0
5x-9=0
5x=9
x1=1.8
5x+9=0
5x= -9
x2= -1.8
x=±1.8
прямая пропорциональность имеет формулу: y = kx
т.к. по условию их графики параллельны, то их коэффициенты (k) равны.
уравнение прямой, проходящей через две точки, имеет вид: (x - x1) / (x2 - x1) = (y - y1) / (y2 - y1), где x1, x2, y1, y2 - координаты
в данном случае x1 = 0, y1 = 2, x2 = 6, y2 = 0
тогда (x - 0) / (6 - 0) = (y - 2) / (0 - 2)
x / 6 = (y - 2) / -2 | умножаем на 6
x = -3(y - 2)
x = -3y + 6
6 - 3y = x
3y = 6 - x
y = (6 - x) / 3
y = 2 - x/3 - линейная функция, её коэффициент k = -1/3
т.к. коэффициенты равны, то прямая пропорциональность имеет формула y = -x/3