(4 - y) * 2 - y(y + 1) - раскроем скобки; чтобы умножить одночлен на многочлен, надо одночлен умножить на каждый член многочлена; при раскрытии первой скобки умножим 2 на 4 и на (- у), второй скобки - умножим (- у) на у и на 1;
8 - 2y - y^2 - y - приведем подобные; подобные - это слагаемые с одинаковой буквенной частью и чтобы их сложить надо сложить их коэффициенты и умножить на общую буквенную часть;
(4 - y) * 2 - y(y + 1) - раскроем скобки; чтобы умножить одночлен на многочлен, надо одночлен умножить на каждый член многочлена; при раскрытии первой скобки умножим 2 на 4 и на (- у), второй скобки - умножим (- у) на у и на 1;
8 - 2y - y^2 - y - приведем подобные; подобные - это слагаемые с одинаковой буквенной частью и чтобы их сложить надо сложить их коэффициенты и умножить на общую буквенную часть;
8 + (- 2y - y) - y^2 = - y^2 - 3y + 8;
y = - 1/9; - (- 1/9)^2 - 3 * (- 1/9) + 8 = - 1/81 + 3/9 + 8 = - 1/81 + 27/81 + 8 = 26/81 + 8 = 8 26/81.
ответ. 8 26/81.
Скорее всего выражение должно выглядеть так (4 - y)^2 - y(y + 1), и тогда первую скобку раскроем по формуле (a - b)^2 = a^2 - 2ab + b^2;
16 - 8y + y^2 - y^2 - y = 16 - 9y;
y = - 1/9; 16 - 9 * (- 1/9) = 16 + 9/9 = 16 + 1 = 17.
ответ. 17.
ПРИМЕР №1. Найти остаток от деления уголком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2
2x5 + 3x3 - 2x2 + x
3.
x6 + 2x5 - x3 + x x4 - 4x + 2
x6 - 4x3 + 2x2 x2 + 2x
2x5 + 3x3 - 2x2 + x
2x5 - 8x2 + 4x
3x3 + 6x2 - 3x
Целая часть: x + 2
Остаток: 3x2 + 6x - 3
ПРИМЕР №2.. Разделить многочлены столбиком.
Решение. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой
2.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2
- 7/2x2 + x + 3
3.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
4.
x3 - 2x2 + x + 3 - 2x - 3
x3 + 3/2x2 - 1/2x2 + 7/4x - 25/8
- 7/2x2 + x + 3
- 7/2x2 - 21/4x
25/4x + 3
25/4x + 75/8
- 51/8
Целая часть: - 1/2x2 + 7/4x - 25/8
Остаток: - 51/8