ответ: n ∈ (-∞; -√12] ∪ [+√12; +∞).
x² + nx + 3n = 0,
Это совсем как квадратное уравнение, в котором нужно найти x. Выполним первый шаг, найдем дискриминант:
D = √(b² - 4ac) = √(n² - 4*1*3) = √(n² - 12).
Мы знаем, что из отрицательных чисел корень нельзя извлечь (в рамках действительных чисел), так что на дискриминант такое ограничение:
n² - 12 ≥ 0, то есть n² ≥ 12.
Решив это уравнение, получаем, что:
n ∈ (-∞; -√12] ∪ [+√12; +∞).
Это означает, что x - любое действительное число от минус бесконечности до -√12 включительно, а также от +√12 включительно до плюс бесконечности.
То есть n может быть равен, например, +√12, -√12, -100, - 45, 100 и так далее, но не может быть равен 0, 1, 5, -7, -11 и так далее.
(a+b)²+2(a²-b²)+(a-b)²
4a² = 1
(a+b+a-b)²
4a² = 1
(2a)²
4a² = 1
4a²
1=1
Тождество доказано.
2) а - 1 * а - 2 =
а²-2а+1 1-а а+1 а+1
= а + 1 * а - 2 =
(а-1)² а-1 а+1 а+1
= а + а - 2 =
(а-1)² (а-1)(а+1) а+1
= а(а+1) + а(а-1) - 2(а-1)² =
(а-1)²(а+1)
= а²+а+а²-а-2(а²-2а+1) =
(а-1)²(а+1)
= 2а²-2а²+4а-2 =
(а-1)²(а+1)
= 4а-2
(а-1)²(а+1)
ответ: n ∈ (-∞; -√12] ∪ [+√12; +∞).
x² + nx + 3n = 0,
Это совсем как квадратное уравнение, в котором нужно найти x. Выполним первый шаг, найдем дискриминант:
D = √(b² - 4ac) = √(n² - 4*1*3) = √(n² - 12).
Мы знаем, что из отрицательных чисел корень нельзя извлечь (в рамках действительных чисел), так что на дискриминант такое ограничение:
n² - 12 ≥ 0, то есть n² ≥ 12.
Решив это уравнение, получаем, что:
n ∈ (-∞; -√12] ∪ [+√12; +∞).
Это означает, что x - любое действительное число от минус бесконечности до -√12 включительно, а также от +√12 включительно до плюс бесконечности.
То есть n может быть равен, например, +√12, -√12, -100, - 45, 100 и так далее, но не может быть равен 0, 1, 5, -7, -11 и так далее.