ΔАВС , АВ=ВС , ∠АСВ=75° , точка Х∈ВС , т. Y∈ВС , т. Х∈ВY ,
АХ=ВХ=2 см , ∠ВАХ=∠YАХ . Найти AY .
Так как ΔАВС - равнобедренный и АВ=ВС, то ∠ВАС=∠АСВ=75° ⇒
∠АВС=180°°-75°-75=30°
Так как АХ=ВХ=2 см , то ΔАВХ - равнобедренный и ∠ВАХ=∠АВХ , но ∠АВХ=∠АВС=30° , поэтому ∠ВАХ=30° и ∠АХВ=180°-30°-30°=120° .
Тогда внешний угол ∠AXY=180°-120°=60° .
По условию ∠YAX=∠ВАХ=30° . Тогда в ΔAXY угол ∠AYX=180°-30°-60°=90° , то есть ΔAXY - прямоугольный , в котором гипотенуза АХ=2 см , а катет XY , лежащий против угла в 30°, равен половине гипотенузы, то есть XY=1 cм .
По теореме Пифагора AY²+XY²=AX² ⇒ AY²=AX²-XY²=2²-1²=4-1=3 ,
ΔАВС , АВ=ВС , ∠АСВ=75° , точка Х∈ВС , т. Y∈ВС , т. Х∈ВY ,
АХ=ВХ=2 см , ∠ВАХ=∠YАХ . Найти AY .
Так как ΔАВС - равнобедренный и АВ=ВС, то ∠ВАС=∠АСВ=75° ⇒
∠АВС=180°°-75°-75=30°
Так как АХ=ВХ=2 см , то ΔАВХ - равнобедренный и ∠ВАХ=∠АВХ , но ∠АВХ=∠АВС=30° , поэтому ∠ВАХ=30° и ∠АХВ=180°-30°-30°=120° .
Тогда внешний угол ∠AXY=180°-120°=60° .
По условию ∠YAX=∠ВАХ=30° . Тогда в ΔAXY угол ∠AYX=180°-30°-60°=90° , то есть ΔAXY - прямоугольный , в котором гипотенуза АХ=2 см , а катет XY , лежащий против угла в 30°, равен половине гипотенузы, то есть XY=1 cм .
По теореме Пифагора AY²+XY²=AX² ⇒ AY²=AX²-XY²=2²-1²=4-1=3 ,
AY=√3 cм .
Объяснение:
1) найдем координаты вершины параболы по формуле
х₀=-b/2a
х₀=-6/(2(-1))=3
у₀=у(3)=-9+18-5=4
2) выразим х чрез у
y=-x²+6x-5
x²-6x+(y+5)=0 это квадратное уравнение решаем его по фрмуле корней
x₁₋₂=(-b±√d)/2a=(6±(√(36-4(у+5))))/2=(6±(√4(9-4(у+5))))/2=
=(6±2(√(9-(у+5))))/2=3±√(9-(у+5))=3±√(9-у-5)=3±√(4-у)
получилось 2 выражения
х=3+√(4-у)
х=3-√(4-у)
3) меняем местами х и у
y=3+√(4-x)
y=3-√(4-x)
c учетом того, что графики прямой и обратной функции симметричны относительно прямой у=х
для х∈(-∞;3] обратной функцией будет y=3-√(4-x)
Дополнительно
график прямой и обратной функции