Поскольку ветки парабол направлены вниз, то вершины парабол расположены либо выше оси абсцисс при условии, что D > 0, либо ниже оси абсцисс, если D < 0.
1) D > 0;
Имеем систему неравенств:
64p² + 4p > 0 и 64p² + 16 > 0
p(16p + 1) > 0 и 4p² + 1 > 0 второе неравенство удовлетворяют все действительные числа, поэтому система равносильна первому неравенству.
7х+3у=1, 2х-6у=-10 выражаем в каждом уравнение у через х: 3у=1-7х, у=1-7х/3 -6у=-10-2х, у=10+2х/6 у= 1-7х 3 у= 5+х 3 Это линейные функции, график "прямая" Строим график 1 функции х| 0 | 1| y|1/3|-2| построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2) соединили эти точки прямой. Строим график 2 функции: х| 0 | 1 | y|1 1/3| 2 | В то же прямоугольной системе координат строим точки М(0;1 1/3),Р(1;2) соединяем точки прямой. Прямые пересекаются в точке Д(-1/2;1 1/2) ответ: (-1/2; 1 1/2)
Поскольку ветки парабол направлены вниз, то вершины парабол расположены либо выше оси абсцисс при условии, что D > 0, либо ниже оси абсцисс, если D < 0.
1) D > 0;
Имеем систему неравенств:
64p² + 4p > 0 и 64p² + 16 > 0
p(16p + 1) > 0 и 4p² + 1 > 0 второе неравенство удовлетворяют все действительные числа, поэтому система равносильна первому неравенству.
p(16p + 1) > 0; p(16p + 1) = 0; p₁ = 0; p₂ = -1/16.
-1/16 0>
p∈(-∞; -1/16)U(0; ∞)
При p∈(-∞; -1/16)U(0; ∞) вершины парабол расположены выше оси абсцисс
2) D < 0 исключается, поскольку у второй функции дискриминант положителен и её вершина располагается выше оси абсцисс.
2х-6у=-10
выражаем в каждом уравнение у через х:
3у=1-7х, у=1-7х/3
-6у=-10-2х, у=10+2х/6
у= 1-7х
3
у= 5+х
3
Это линейные функции, график "прямая"
Строим график 1 функции
х| 0 | 1|
y|1/3|-2|
построили прямоугольную систему координат и две точки А(0;1/3),В(1;-2)
соединили эти точки прямой.
Строим график 2 функции:
х| 0 | 1 |
y|1 1/3| 2 |
В то же прямоугольной системе координат строим точки
М(0;1 1/3),Р(1;2)
соединяем точки прямой.
Прямые пересекаются в точке Д(-1/2;1 1/2)
ответ: (-1/2; 1 1/2)