Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Берем первое выражение x6+x5+2x4+2x3+4x2+4x=0 выносим х в третьей степени за скобки х3(х3+х2+2х+2)=0 х3=0 либо (х3+х2+2х+2)=0 х=0 решим получившиеся уравнение х3+х2+2х+2=0 (далее способом группировки,разбиваем многочлен на множители. (х3+2х) +(х2+2)=0) х(х2+2) + 1(х2+2)=0 (х+1)*(х2+2)=0 х+1=0 либо х2+2=0 х= -1 х2=-2 (решений нет) теперь берем второе выражение 3x4+3x3+6x2+6x=0выносим за скобки 3х3х(х3+х2+2х+2)=03х=0 либо х3+х2+2х+2 =0х=0решим получившиеся уравнение х3+х2+2х+2 =0используя способ группировки,мы разбиваем многочлен на множителих(х2+2)+1(х2+2)=0(х+1)*(х2+2)=0х+1=0 либо х2+2=0х= -1 х2= -2(решений нет)общие корни уравнений : 0 и -1.ответ : 0,-1
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.