1. Покажем, что наше множество не может содержать более 2 элементов. В самом деле, если множество содержит три элемента, то после упорядочивания по возрастанию получим:
a<b<c,
причём по условию ab=bc, отсюда a=c, что невозможно ввиду неравенства a<c. Если же множество содержит не менее четырёх элементов, то выделим в нём два наименьших и два наибольших, тогда после упорядочивания по возрастанию получим:
a<b<…<c<d,
причём ab=cd, но такое равенство невозможно, поскольку a<c и b<d. Следовательно, наше множество содержит 2 элемента.
2. Таким образом, задача свелась к подсчёту числа решений уравнения:
ab=2020, a<b.
Поскольку 2020 не является полным квадратом, то это число есть в точности половина делителей числа 2020, то есть 6.
1. Раскрасим основание A1A2...A8 в один из 10 цветов. Такую раскраску можно осуществить
2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 10−1=9 вариантов раскраски, для второй грани SA2A3 имеется 10−2=8 вариантов раскраски, и так далее, для 8-й по порядку грани имеется 10−8=2 вариант(-ов, -a) раскраски. Таким образом, всего получаем
M=10(10−1)(10−2)...(10−8)
вариантов раскраски пирамиды.
3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 8 движений (8 поворотов). Потому искомое число раскрасок будет в 8 раз меньше величины M.
ответ: 6 множеств
Объяснение:
1. Покажем, что наше множество не может содержать более 2 элементов. В самом деле, если множество содержит три элемента, то после упорядочивания по возрастанию получим:
a<b<c,
причём по условию ab=bc, отсюда a=c, что невозможно ввиду неравенства a<c. Если же множество содержит не менее четырёх элементов, то выделим в нём два наименьших и два наибольших, тогда после упорядочивания по возрастанию получим:
a<b<…<c<d,
причём ab=cd, но такое равенство невозможно, поскольку a<c и b<d. Следовательно, наше множество содержит 2 элемента.
2. Таким образом, задача свелась к подсчёту числа решений уравнения:
ab=2020, a<b.
Поскольку 2020 не является полным квадратом, то это число есть в точности половина делителей числа 2020, то есть 6.
ответ: 453600
Объяснение:
1. Раскрасим основание A1A2...A8 в один из 10 цветов. Такую раскраску можно осуществить
2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 10−1=9 вариантов раскраски, для второй грани SA2A3 имеется 10−2=8 вариантов раскраски, и так далее, для 8-й по порядку грани имеется 10−8=2 вариант(-ов, -a) раскраски. Таким образом, всего получаем
M=10(10−1)(10−2)...(10−8)
вариантов раскраски пирамиды.
3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 8 движений (8 поворотов). Потому искомое число раскрасок будет в 8 раз меньше величины M.
Получаем ответ:
10(10−1)(10−2)...(10−8)8=453600.