Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
Дана функция у= 20х3-Зх? 6х + 3.
Находим 1 и 2 производные:
У 3 60 х 2 - 6х -6.
у" = 120x - 6. Приравниваем её нулю:
120x - 6 = 0,
х 3D6/120 = 1/20= 0,05. у%3
2,695.
Это точка перегиба графика функции.
Имеем 2 интервала выпуклости, вогнутости: (-ю;0,05) и (0,05; +оо).
Находим знаки второй производной на полученных промежутках.
х = 1
0,05
y" = -6
о
о
114
Где вторая
производная меньше нуля, там график функции выпуклый, а где больше - вогнутый:
Выпуклая на промежутке: (-ю; 0,05).
Вогнутая на промежутках: (0,05; +оо).
До встречи с другим автомобилем он путь Х*1=Х км.
Следовательно второй автомобиль путь до встречи 100-Х.
Время в пути из города в город первого автомобиля равно 100/Х ч.
Время в пути из города в город второго автомобиля равно 100/(100-Х).
Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение.
100/Х+5/6=100/(100-Х).
После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0.
Получаем x^2-340x+12000=0
Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч.
Скорость второго - 30 км/ч