В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Babka2002
Babka2002
02.10.2022 10:22 •  Алгебра

Решить уравнение: sin2x=√2|cosx|

Показать ответ
Ответ:
dubonosova37
dubonosova37
15.10.2020 14:59

\sin2x=\sqrt{2} |\cos x|

1. Раскроем модуль при условии \cos x\geq 0:

\sin2x=\sqrt{2} \cdot\cos x

2\sin x\cos x-\sqrt{2} \cdot\cos x=0

\cos x(2\sin x-\sqrt{2}) =0

\left[\begin{array}{l} \cos x=0\\ 2\sin x-\sqrt{2} =0\end{array}

\left[\begin{array}{l} \cos x=0\\ \sin x=\dfrac{\sqrt{2} }{2}\end{array}

\left[\begin{array}{l} x=\dfrac{\pi}{2}+\pi n \\ \left[\begin{array}{l} x=\dfrac{\pi }{4}+2\pi n \\ x=\dfrac{3\pi }{4}+2\pi n \end{array}\end{array},\ n\in\mathbb{Z}

Однако корни x=\dfrac{3\pi }{4}+2\pi n не удовлетворяют условию раскрытия модуля. Поэтому окончательный ответ:

\left[\begin{array}{l} x=\dfrac{\pi}{2}+\pi n \\x=\dfrac{\pi }{4}+2\pi n \end{array},\ n\in\mathbb{Z}

2. Раскроем модуль при условии \cos x:

\sin2x=-\sqrt{2} \cdot\cos x

2\sin x\cos x+\sqrt{2} \cdot\cos x=0

\cos x(2\sin x+\sqrt{2} )=0

\left[\begin{array}{l} \cos x=0\\ 2\sin x+\sqrt{2} =0\end{array}

Заметим, что первое уравнение не удовлетворят условию раскрытия модуля. Продолжаем решать только второе уравнение:

\sin x=-\dfrac{\sqrt{2} }{2}

\left[\begin{array}{l} x=-\dfrac{\pi }{4}+2\pi n \\ x=-\dfrac{3\pi }{4}+2\pi n \end{array},\ n\in\mathbb{Z}

Однако корни x=-\dfrac{\pi }{4}+2\pi n не удовлетворяют условию раскрытия модуля. Поэтому окончательный ответ этого случая:

x=-\dfrac{3\pi }{4}+2\pi n

3. Объединим решения, полученные в предыдущих пунктах:

\left[\begin{array}{l} x=\dfrac{\pi}{2}+\pi n \\x=\dfrac{\pi }{4}+2\pi n\\ x=-\dfrac{3\pi }{4}+2\pi n \end{array},\ n\in\mathbb{Z}

Или более кратко:

\left[\begin{array}{l} x=\dfrac{\pi}{2}+\pi n \\x=\dfrac{\pi }{4}+\pi n \end{array},\ n\in\mathbb{Z}

ответ: \dfrac{\pi}{2}+\pi n;\ \dfrac{\pi }{4}+\pi n,\ n\in\mathbb{Z}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота