1) Периметр - это сумма длин всех сторон. Складываем все стороны 10+4+8 и получаем 22.
2)Угол М, т.к. он находится между двумя сторонами, соответственным сторонам угла С.
3)Тоже самое правило, что и во второй задаче
4)Треугольники равны, если две стороны и угол между ними соответственно равны.
5)Так как это соответственные стороны и углы.
6)Треугольник АКМ = треугольнику МКВ, т.к.АМ = МВ по условию, МК - общая, а угол АМК = углу КМВ, т.к. они разделены биссектрисой угла АМВ. Значит угол АКМ = углу МКВ. А это значит, что КМ является биссектрисой угла АКВ.
1) 22
2)угол М
3)угол К = 50 градусов
4)MP=BC
5)угол А = углу С и АВ = СЕ
6)Верно
Объяснение:
1) Периметр - это сумма длин всех сторон. Складываем все стороны 10+4+8 и получаем 22.
2)Угол М, т.к. он находится между двумя сторонами, соответственным сторонам угла С.
3)Тоже самое правило, что и во второй задаче
4)Треугольники равны, если две стороны и угол между ними соответственно равны.
5)Так как это соответственные стороны и углы.
6)Треугольник АКМ = треугольнику МКВ, т.к.АМ = МВ по условию, МК - общая, а угол АМК = углу КМВ, т.к. они разделены биссектрисой угла АМВ. Значит угол АКМ = углу МКВ. А это значит, что КМ является биссектрисой угла АКВ.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 9). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
9 = √а
(9)² = (√а)²
81 = а
а=81;
б) Если х∈[0; 9], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√9=3;
При х∈ [0; 9] у∈ [0; 3].
в) y∈ [4; 121]. Найдите значение аргумента.
4 = √х
(4)² = (√х)²
х=16;
121 = √х
(121)² = (√х)²
х=14641;
При х∈ [16; 14641] y∈ [4; 121].
г) Найдите при каких х выполняется неравенство у ≤ 3.
у ≤ 3
√х ≤ 3
(√х)² ≤ (3)²
х ≤ 9;
Неравенство у ≤ 3 выполняется при х ≤ 9.