Выражение √а имеет смысл при а ≥ 0 => выражение √(х² - 2х - 35) имеет смысл при: х² - 2х - 35 ≥ 0 ★ х² - 2х - 35 = 0 По теореме обратной теореме Виета: х1 × х2 = -35 ; х1 + х2 = 2 => х1 = -5 ; х2 = 7 ★ (х + 5)(х - 7) ≥ 0 Отметим на координатной прямой точки -5 и 7 (эти точки будут закрашенными). ———[-5]———[7]———> Затем подставим в неравенство значение из каждого из трёх промежутков и согласно знаку полученного числа получим следующую последовательность: + ; - ; + .Таким образом, решением данного неравенства будет х, принадлежащий объединению промежутков (-∞ ; -5] и [7 ; +∞). ответ: выражение √(х² - 2х - 35) имеет смысл при х, принадлежащем объединению промежутков (-∞ ; -5] и [7 ; +∞).
б) с³+d³-3cd(c+d) = (c+d)(с²-сd+d²)-3cd(c+d) = (c+d)((c²-cd+d²)-3cd) =
= (c+d)(c²-cd+d²-3cd) = (c+d)(c²-4cd+d²)
2. Пусть х - любое число, 2х - четное, 2х+1 - нечетное, 2х+3 - следующее нечетное. Тогда:
(2х+1)²-(2х+3)² = ((2х+1)-(2х+3))((2х+1)+(2х+3)) = (2х+1-2х-3)(2х+1+2х+3) =
= -2(4х+4) = -2*4(х+1) = -8(х+1)
-8(х+1) : 8 = -(х+1) чтд
3. 14⁴-165²+138²-107² = (196²-165²)+(138²-107²) =
= (196-165)(196+165)+(138-107)(138+107) = 31(196+165)+31(138+107) =
= 31((196+165)+(138+107))
31((196+165)+(138+107)) : 31 = ((196+165)+(138+107)) чтд
х² - 2х - 35 ≥ 0
★ х² - 2х - 35 = 0
По теореме обратной теореме Виета:
х1 × х2 = -35 ; х1 + х2 = 2 => х1 = -5 ; х2 = 7
★ (х + 5)(х - 7) ≥ 0
Отметим на координатной прямой точки -5 и 7 (эти точки будут закрашенными).
———[-5]———[7]———>
Затем подставим в неравенство значение из каждого из трёх промежутков и согласно знаку полученного числа получим следующую последовательность:
+ ; - ; + .Таким образом, решением данного неравенства будет х, принадлежащий объединению промежутков (-∞ ; -5] и [7 ; +∞).
ответ: выражение √(х² - 2х - 35) имеет смысл при х, принадлежащем объединению промежутков
(-∞ ; -5] и [7 ; +∞).