Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.
В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
Нельзя.
Объяснение:
Так как вариантов слишком много, то придется зайти с другой стороны.
Для начала следует вычесть единицу, а потом делть на 3 или 4.
2019 не делится на четыре так как оно не четное. На три делится, так как сумма цифр делится на три - 2+0+1+9=12
Разделив на три получаем число 673 и сразу же вычитаем единицу. Полученное число делится и на три и на четыре, потому придется пробовать все варианты.
672/4=168
168-1=167 (не делится на четыре)
167/3=56
56-1=55 (не делится ни на три ни на четыре)
Попробуем другим путем.
672/3=224
224-1=223 (это простое число)
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на ребре, и при этом лучи лежат на гранях двугранного угла и перпендикулярны ребру.
В ∆ АВС опустим высоту АЕ перпендикулярно BC, тогда
DA перпендикулярен ( ABC )
AE принадлежит ( АВС )
Значит, DA перпендикулярен AE
AE перпендикулярен ВС
Тогда по теореме о трёх перпендикулярах DE перпендикулярен ВС
Из этого следует, что угол AED – линейный угол двугранного угла ABCD.
Рассмотрим ∆ АВС:
Высота равностороннего треугольника вычисляется по формуле:
h = a√3 / 2
где а – сторона равностороннего треугольника, h – высота
AE = AB × √3 / 2 = 6 × √3 / 2 = 3√3
Рассмотрим ∆ AED (угол DAE = 90°):
tg AED = AD / AE = 4 / 3√3 = 4√3 / 9
Объяснение: