Решение y=2x^3-3x^2 Находим производную 6x^2 - 3 Приравниваем её к нулю (находим критические точки( 6x^2 - 3 = 0 6x^2 = 3 x^2 = 1/2 x1 = -1/√2 x2= 1/√2 Проверяем знаки производной при переходе через критические точки + - + > -1/√2 1/√2 х При переходе через точку (-1/√2) производная меняет знак с (+) на (-). Значит точка (-1/√2) точка максимума. уmax (-1√/2) = -1 При переходе через точку (1/√2) производная меняет знак с (-) на (+). Значит точка (1/√2) точка минимума. уmin = (-1/√2) .
(x + y + z)² = (x + y)² + 2(x + y)z + z² = x² + 2xy + y² + 2xz + 2yz + z² = x² + y² + z² + 2(xy + xz + yz)
x² + xy + xz = y x(x + y + z) = y
y² + yz + yx = z y(x + y + z) = z
z² + zx + zy = x z(x + y + z) = x
всё складываем
x² + xy + xz + y² + yz + yx + z² + zx + zy = z + y + x
x² + y² +z² + 2(xy + xz + yz) = x + y + z
(x + y + z)² = x + y + z
1. x + y + z = 0
x(x + y + z) = y
y(x + y + z) = z
z(x + y + z) = x
0x = y
0y = z
0z = x
x=y=z=0
2. x + y + z = 1
x = y
y = z
z = x
x² + x² + x² = x
3x² = x
x = 0 y = 0 y = 0
x = 3 не корень
ответ (0 0 0)
y=2x^3-3x^2
Находим производную
6x^2 - 3
Приравниваем её к нулю (находим критические точки(
6x^2 - 3 = 0
6x^2 = 3
x^2 = 1/2
x1 = -1/√2
x2= 1/√2
Проверяем знаки производной при переходе через критические точки
+ - +
>
-1/√2 1/√2 х
При переходе через точку (-1/√2) производная меняет знак с (+) на (-). Значит точка (-1/√2) точка максимума.
уmax (-1√/2) = -1
При переходе через точку (1/√2) производная меняет знак с (-) на (+). Значит точка (1/√2) точка минимума.
уmin = (-1/√2)
.