С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
sin20+sin40-cos10=0
Сложим синусы по формулам суммы:
2sin30*cos10-cos10=0
Вынесем общий множитель:
cos10(2sin30-1)=0
Произведение равно 0, когда хотя бы один из множителей равен 0, в данном случае
(2sin30-1)=(2*1/2-1)=0
2.sin3a-sina*cos2a
По формулам произведения умножим синус на косинус:
sin3a-1/2 (sin(-a)+sin3a)=sin3a+1/2 sina - 1/2 sin3a=1/2(sin3a+sina)
По формулам суммы сложим синусы:
1/2(sin3a+sina)=1/2*2sin2a*cosa=sin2a*cosa=2sina*cosa*cosa=2sina*cos^2 a
3.
Т.к. в правой части ничего изменить нельзя, то будем работать только с левой части уравнения, пытаюсь представить ее в виде -ctg3a.
В числители вычтем синусы, в знаменателе - косинусы.
Вынесем в числителе и знаменателе общий множитель:
Сокращаем и получаем -cos3a/sin3a=-ctg3a