-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
8 - 8Sin²x + 6Sinx -3 = 0
8Sin²x -6Sinx -5 = 0
Решаем как квадратное
D = 36 -4*8*(-5) = 196
Sinx = (6+14)/16 = 20/16 ( нет решений)
Sinx =(6 -14)/16 = -1/2
Sinx = -1/2
x = (-1)^(n+1)π/6 + nπ, n ∈Z
2)Cos²2x + Cos6x -Sin²2x = 0
Cos4x + Cos6x = 0 ( формула суммы косинусов)
2Сos5xCosx = 0
Cos5x = 0 или Cosx = 0
5x = π/2 + πk , k ∈Z x = π/2 + πn , n ∈Z
x = π/10 + πk/5, k ∈Z
3) (Cos²2x - Sin²2x)(Cos²2x+Sin²2x) = √3/2
Cos²2x -Sin²2x = √3/2
Cos4x = √3/2
4x = +-arcCos(√3/2) + 2πk , k ∈Z
4x = +-π/6 +2πk , k ∈Z
x = +-π/24 + πk/2 , k ∈Z
4) 4Sin²x -8SinxCosx +10Cos²x = 3*1
4Sin²x -8SinxCosx +10Cos²x = 3(Sin²x + Cos²x)
4Sin²x -8SinxCosx +10Cos²x -3sin²x - 3Cos²x = 0
Sin²x -8SinxCosx +7Cos²x = 0 | : Cos²x
tg²x - 8tgx +7 = 0
По т. Виета tgx = 1 или tgx = 7
x = π/4 + πk , k ∈Z x = arctg7 + πn , n ∈Z
5) 1 + Cosx + Cos2x = 0
1 + Cosx + 2Cos²x - 1 = 0
Cosx + 2Cos²x = 0
Cosx(1 +2Cosx) = 0
Cosx = 0 или 1 + 2Cosx = 0
x = π/2 + πk , k ∈Z Cosx = -1/2
х = +-arcCos(-1/2) +2πn , n ∈Z
x = +-2π/3 + 2πn , n ∈Z
6) -Cosx > -0,5
Cosx < 0,5
-π/3 + 2πk < x < π/3 + 2πk , k ∈Z