Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
Прямые пересекаются тогда когда они не параллельны, прямые параллельны тогда когда коэффициенты к1=к2,где у1=к1х+в; у2=к2х+в
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)