В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько красных яблок во второй корзине?
получаем, что яблок в первой корзине делится на 9, а число яблок во второй корзине делится на 17
9х+17у=79
х=1: 9+17у=79; 17у=70; у не целое
х=2: 18+17у=79; 17у=61; у не целое
х=3: 27+17у=79; 17у=52; у не целое
х=4: 36+17у=79; 17у=43; у не целое
х=5: 45+17у=79; 17у=34; у=2
х=6: 54+17у=79; 17у=25; у не целое
х=7: 63+17у=79; 17у=16; у<1
значит в первой корзине 9*5=45 яблок, во второй - 17*2=34, (9/17)*34=18 красных яблок
Всё что нужно для решения - физическая формула N*t=A (мощность на время равно работа) Хотя для школы задача действительно может казаться не очень тривиальной. начальное условие: (N1+N2)8=A N1*t=A N2(t+12)=A A/N1 = ? A/N2 = ?
из второго выражаем t=A/N1 подставляем в третье N2(A/N1+12)=A итого система из 2 уравнений: (N1+N2)8=A N2(A/N1+12)=A
из первого выражаем A/8 - N1 = N2 Подставляем N2 во второе, далее идут его преобразования (A/8 - N1)(A/N1+12)=A A^2/8N1 +A/2 -12N1 = A A^2 - 4AN1 -12N1*8N1 = 0 преобразовываем, преобразование выполняется решением квадратного уравнения A^2 - 4AN1 -12N1*8N1 = (A-12N1)(A+8N1) итого корни -8N1 12N1 отрицательный корень не имеет физического смысла (A-12N1)(A+8N1)=0 A=12N1 A/N1=12 - искомое время
подставляя это в исходное N2(A/N1+12)=A получаем N2(12+12)=A A/N2=24 - второе искомое время
Задание № 4:
В двух корзинах 79 яблок, причём 7/9 первой корзины составляют зелёные яблоки, а 9/17 второй корзины - красные яблоки. Сколько красных яблок во второй корзине?
получаем, что яблок в первой корзине делится на 9, а число яблок во второй корзине делится на 17
9х+17у=79
х=1: 9+17у=79; 17у=70; у не целое
х=2: 18+17у=79; 17у=61; у не целое
х=3: 27+17у=79; 17у=52; у не целое
х=4: 36+17у=79; 17у=43; у не целое
х=5: 45+17у=79; 17у=34; у=2
х=6: 54+17у=79; 17у=25; у не целое
х=7: 63+17у=79; 17у=16; у<1
значит в первой корзине 9*5=45 яблок, во второй - 17*2=34, (9/17)*34=18 красных яблок
ответ: 18
Хотя для школы задача действительно может казаться не очень тривиальной.
начальное условие:
(N1+N2)8=A
N1*t=A
N2(t+12)=A
A/N1 = ?
A/N2 = ?
из второго выражаем
t=A/N1
подставляем в третье
N2(A/N1+12)=A
итого система из 2 уравнений:
(N1+N2)8=A
N2(A/N1+12)=A
из первого выражаем
A/8 - N1 = N2
Подставляем N2 во второе, далее идут его преобразования
(A/8 - N1)(A/N1+12)=A
A^2/8N1 +A/2 -12N1 = A
A^2 - 4AN1 -12N1*8N1 = 0
преобразовываем, преобразование выполняется решением квадратного уравнения
A^2 - 4AN1 -12N1*8N1 = (A-12N1)(A+8N1)
итого
корни
-8N1
12N1
отрицательный корень не имеет физического смысла
(A-12N1)(A+8N1)=0
A=12N1
A/N1=12 - искомое время
подставляя это в исходное N2(A/N1+12)=A
получаем
N2(12+12)=A
A/N2=24 - второе искомое время