1) Пусть скорость первого пешехода х км/ч, а второго у км/ч, тогда их общая скорость х+у км/ч. Пешеходы встретились через 3ч 20 мин, т.е.10/3 ч. Составим первое уравнение системы 10/3(х+у)=30
х+у=30:10/3
х+у=9
х=9-у
2) По второй ситуации 1 вышел на 2 ч раньше и потом вышел второй и встретились они через 2,5 ч. Значит 1 шел 4,5 ч, а второй 2,5 ч. Составим второе уравнение
4,5х+2,5у=30. разделим его на 5
0,9х+0,5у=6. Подставим вместо х выражение 9-у
0,9(9-у)+0,5у=6
8,1-0,9у+0,5у=6
-0,4у=-2,1
у=2,1:0,4
у=5,25
3) х=9-5,25=3,75
ответ: скорость первого пешехода 3,75 км/ч, а второго 5,25 км/ч.
Объяснение:
У нас есть V (скорость), t (время) и S (расстояние)
Лодка двигалась ПО течению реки. Ее собственная скорость остаётся неизвестна. Соответственно:
1) х км/ч + 4км/ч = это общая скорость с которой двигалась лодка.
Далее у нас даётся время за которое лодка расстояние.
2) Время: за 6 часов.
3) Расстояние: 102 километра.
Мы записываем таблицу
V T S
x+4. 6. 102
И тут мы видим что нам дано все из данных. Это уравнение:
(х+4) × 6 = 102
6х+24=102
6х=78 |: 6
х=13 км/ч скорость лодки.
Проверяем: (13+4)×6=102
1) Пусть скорость первого пешехода х км/ч, а второго у км/ч, тогда их общая скорость х+у км/ч. Пешеходы встретились через 3ч 20 мин, т.е.10/3 ч. Составим первое уравнение системы 10/3(х+у)=30
х+у=30:10/3
х+у=9
х=9-у
2) По второй ситуации 1 вышел на 2 ч раньше и потом вышел второй и встретились они через 2,5 ч. Значит 1 шел 4,5 ч, а второй 2,5 ч. Составим второе уравнение
4,5х+2,5у=30. разделим его на 5
0,9х+0,5у=6. Подставим вместо х выражение 9-у
0,9(9-у)+0,5у=6
8,1-0,9у+0,5у=6
-0,4у=-2,1
у=2,1:0,4
у=5,25
3) х=9-5,25=3,75
ответ: скорость первого пешехода 3,75 км/ч, а второго 5,25 км/ч.
Подробнее - на -