1) Проверяем правильность утверждения при малых n.
n=1: 1=1² - верно
n=2: 1+3=2² - верно
n=3: 1+3+5=3² - верно
2) Предположим, что утверждение верно для n=k.
Тогда справедливо равенство 1+3+5++(2k-1)=k².
3) Докажем, что утверждение верно и для n=k+1.
Слева и справа добавим по 2(k+1)-1:
Получим 1+3+5++(2k-1)+(2(k+1)-1)=k²+2(k+1)-1
Преобразуем правую часть.
k²+2(k+1)-1=k²+2k+1=(k+1)².
Таким образом, из того, что 1+3+5++(2k-1)=k², следует то, что
1+3+5++(2k-1)+(2(k+1)-1)=(k+1)² - верно для n=k+1.
Объяснение:
1) Проверяем правильность утверждения при малых n.
n=1: 1=1² - верно
n=2: 1+3=2² - верно
n=3: 1+3+5=3² - верно
2) Предположим, что утверждение верно для n=k.
Тогда справедливо равенство 1+3+5++(2k-1)=k².
3) Докажем, что утверждение верно и для n=k+1.
Слева и справа добавим по 2(k+1)-1:
Получим 1+3+5++(2k-1)+(2(k+1)-1)=k²+2(k+1)-1
Преобразуем правую часть.
k²+2(k+1)-1=k²+2k+1=(k+1)².
Таким образом, из того, что 1+3+5++(2k-1)=k², следует то, что
1+3+5++(2k-1)+(2(k+1)-1)=(k+1)² - верно для n=k+1.
Объяснение:
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума