В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ksenia1unicorn
ksenia1unicorn
19.03.2021 11:23 •  Алгебра

Решить 6,7,8 пример. Задание 24.15​


Решить 6,7,8 пример. Задание 24.15​

Показать ответ
Ответ:
Izabella30
Izabella30
29.01.2022 06:45

E(y): y \in ( - \infty ; 4]

Объяснение:

y=-x^2+4 < = y = 4 - {x}^{2}

Графиком функции является парабола;

множитель при х² меньше нуля - ветви вниз.

Область определения: значение функции (у) может быть определено для любого значения аргумента (х)

D(y) = R

Точки экстремума (точки, в которых производная обращается в 0 или не определена:

y' = (-x^2+4)' \\ y'=-2x +0 =-2x

y' = (-x^2+4)' \\ y'=-2x +0 \\y' =-2x

Найдем значение х для у'=0

y' = 0 \: \\ - 2x = 0 \\ x = 0

y(0) = - 0 {}^{2} + 4 = 4

Для любого х > 0 у < 4

Для любого х < 0 у < 4

Точка (0;4) - точка максимума фунции.

Нижняя граница области значений функции отсутствует.

Следовательно, Область значений функции

E(y): y \in (- \inf ; 4]

E(y): y \in (- \infty ; 4]

0,0(0 оценок)
Ответ:
Bab4enock
Bab4enock
13.06.2021 18:09

Щоб знайти проміжки монотонності, точки екстремумів та екстремуми функції f(x) = 2x - x², спочатку знайдемо похідну функції f'(x) та розв'яжемо рівняння f'(x) = 0 для знаходження точок екстремуму.

Знаходження похідної:

f'(x) = d/dx (2x - x²)= 2 - 2x

Знаходимо точки екстремуму:

f'(x) = 02 - 2x = 02x = 2x = 1

Таким чином, точка екстремуму x = 1.

Досліджуємо знак похідної та визначаємо проміжки монотонності:

3.1. Розглянемо інтервал (-∞, 1):

Для x < 1:

f'(x) = 2 - 2x < 0 (знак "менше нуля")

Таким чином, на цьому інтервалі функція f(x) спадає.

3.2. Розглянемо інтервал (1, +∞):

Для x > 1:

f'(x) = 2 - 2x > 0 (знак "більше нуля")

Таким чином, на цьому інтервалі функція f(x) зростає.

Знаходимо значення функції f(x) у точці екстремуму:

f(1) = 2(1) - (1)²= 2 - 1= 1

Таким чином, екстремум функції f(x) в точці (1, 1).

Отже, результати аналізу функції f(x) = 2x - x² на проміжках монотонності та точки екстремуму такі:

Функція спадає на інтервалі (-∞, 1).Функція зростає на інтервалі (1, +∞).Є точка екстремуму в точці (1, 1).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота