Для того, чтобы выяснить наибольшее число залов, которые можно обойти, не заходя ни в какой зал дважды, нужно правильно раскрасить замок - треугольник. Раскрашиваем в шахматном порядке. Тогда путь по залам - это граф, с вершинами в центрах залов и ребрами - проходами между залами. Видно, ни одно ребро не соединяет вершины одного цвета.
Если начать раскрашивать с первого нижнего углового треугольника в порядке: 1 красим, один - нет, то сумму незакрашенных треугольников можно вычислить по формуле сцммы 1-х n-членов арифметической прогрессии:
а₁=1 (второй верхний ряд треугольников сверху:
а₂=9 (десятый ряд треугольников)
Всего незакрашеные треугольники есть в 9-и рядах, вершина - закрашена)
S₉=(1+9)/2*9=5*9=45 незакрашенных треугольников - залов, значит можно посетить не более 45 незакрашенных залов.
Тогда маршрут может проходить не более, чем по 45+1 закрашенным залам: А - незакрашенный треугольник;
В - закрашенный треугольник.
Маршрут=А+В=А+(А+1)=45+45+1
Маршрут = 91 зал
Во вложении 1 - маршрут, который начинается в нижнем левом треугольнике и, продолжаясь по спирали, заканчивается в среднем закрашенном треугольнике, в четвёртом снизу ряду.
Залы, в которые не надо заходить, иначе придется посетить один зал дважды, отмечены чифрами от 1 до 9 по маршруту движения.
Для наглядности, во вложении 2, пример, подтверждающий формулу, рассмотрен на маленьком треугольнике, разделенном на 9 маленьких.
Сделаем подстановку 2х = t и рассмотрим функцию у = cos(t).Поскольку функция у = cos(t) является периодической с наименьшим положительным периодом, равным 2π, то выполняется следующее соотношение:cos(t) = cos(t + 2π).Возвращаясь к сделанной подстановке, получаем следующее соотношение:cos(2х) = cos(2х + 2π) = cos(2 * (х + π)).Следовательно, функция у = cos(2х) является периодической с периодом, равным π.Покажем, что данные период является наименьшим положительным.Допустим, существует положительный период данной функции, меньший чем π.Пусть этот период равен T.Тогда должно выполняться следующее соотношение:cos(2х) = cos(2(х + Т)) = cos(2х + 2Т) .Следовательно, число 2Т должно являться периодом функции у = cos(t).Однако такого не может быть, поскольку 2Т < 2π, а число 2π является наименьшим положительным периодом функции у = cos(t).Следовательно, π является наименьшим положительным периодом функции у = cos(2х).ответ: наименьший положительный период функции у=cos2x равен π.
Для того, чтобы выяснить наибольшее число залов, которые можно обойти, не заходя ни в какой зал дважды, нужно правильно раскрасить замок - треугольник. Раскрашиваем в шахматном порядке. Тогда путь по залам - это граф, с вершинами в центрах залов и ребрами - проходами между залами. Видно, ни одно ребро не соединяет вершины одного цвета.
Если начать раскрашивать с первого нижнего углового треугольника в порядке: 1 красим, один - нет, то сумму незакрашенных треугольников можно вычислить по формуле сцммы 1-х n-членов арифметической прогрессии:
а₁=1 (второй верхний ряд треугольников сверху:
а₂=9 (десятый ряд треугольников)
Всего незакрашеные треугольники есть в 9-и рядах, вершина - закрашена)
S₉=(1+9)/2*9=5*9=45 незакрашенных треугольников - залов, значит можно посетить не более 45 незакрашенных залов.
Тогда маршрут может проходить не более, чем по 45+1 закрашенным залам: А - незакрашенный треугольник;
В - закрашенный треугольник.
Маршрут=А+В=А+(А+1)=45+45+1
Маршрут = 91 зал
Во вложении 1 - маршрут, который начинается в нижнем левом треугольнике и, продолжаясь по спирали, заканчивается в среднем закрашенном треугольнике, в четвёртом снизу ряду.
Залы, в которые не надо заходить, иначе придется посетить один зал дважды, отмечены чифрами от 1 до 9 по маршруту движения.
Для наглядности, во вложении 2, пример, подтверждающий формулу, рассмотрен на маленьком треугольнике, разделенном на 9 маленьких.