Дано:
АВСЕ — параллелограмм,
S АВСЕ = 45 сантиметров квадратных,
Р АВСЕ = 40 сантиметров,
ВН — высота,
АЕ = 5 * ВН .
Найти длины сторон параллелограмма АВСЕ: АВ, СЕ, ВС, АЕ и высоту ВН — ?
1. Рассмотрим параллелограмм АВСЕ.
S АВСЕ = ВН * АЕ;
45 = ВН * 5 * ВН;
45 = 5 * ВН^2;
ВН^2 = 45 : 5;
ВН^2 = 9;
ВН = 3.
2. АЕ = 5 * 3 = 15.
3. Противолежащие стороны равны между собой в параллелограмме, тогда ВС = АЕ = 15 , АВ = СЕ.
Р авсе = АВ + СЕ + ВС + АЕ;
40 = АВ + АВ + 15 + 15;
40 = 2 * АВ + 30;
2 * АВ = 40 - 30;
2 * АВ = 10;
АВ = 10 : 2;
АВ = 5.
ответ: ВН = 3, ВС = АЕ = 15 , АВ = СЕ = 5.
Объяснение:
добавте в лучший ответ
В решении.
Преобразуйте выражение в многочлен стандартного вида.
Привести многочлен к стандартному виду, значит, привести подобные члены и расположить одночлены в порядке убывания степеней, от большей к меньшей.
а) 3х² - (2 + 3х — 5х²) =
= 3х² - 2 - 3х + 5х² =
= 8х² - 3х - 2.
б) 4 + (-х + 5х²) + 2х =
= 4 - х + 5х² + 2х =
= 5х² + х + 4.
в) х -(4 +3х — х²) + (2 — х²) =
= х - 4 - 3х + х² + 2 - х² =
= -2х - 2.
г) 5 + (2х² - х) — (4х² + 5 ) + х =
= 5 + 2х² - х - 4х² - 5 + х =
= -2х². Многочлен преобразуется в одночлен.
Дано:
АВСЕ — параллелограмм,
S АВСЕ = 45 сантиметров квадратных,
Р АВСЕ = 40 сантиметров,
ВН — высота,
АЕ = 5 * ВН .
Найти длины сторон параллелограмма АВСЕ: АВ, СЕ, ВС, АЕ и высоту ВН — ?
1. Рассмотрим параллелограмм АВСЕ.
S АВСЕ = ВН * АЕ;
45 = ВН * 5 * ВН;
45 = 5 * ВН^2;
ВН^2 = 45 : 5;
ВН^2 = 9;
ВН = 3.
2. АЕ = 5 * 3 = 15.
3. Противолежащие стороны равны между собой в параллелограмме, тогда ВС = АЕ = 15 , АВ = СЕ.
Р авсе = АВ + СЕ + ВС + АЕ;
40 = АВ + АВ + 15 + 15;
40 = 2 * АВ + 30;
2 * АВ = 40 - 30;
2 * АВ = 10;
АВ = 10 : 2;
АВ = 5.
ответ: ВН = 3, ВС = АЕ = 15 , АВ = СЕ = 5.
Объяснение:
добавте в лучший ответ
В решении.
Объяснение:
Преобразуйте выражение в многочлен стандартного вида.
Привести многочлен к стандартному виду, значит, привести подобные члены и расположить одночлены в порядке убывания степеней, от большей к меньшей.
а) 3х² - (2 + 3х — 5х²) =
= 3х² - 2 - 3х + 5х² =
= 8х² - 3х - 2.
б) 4 + (-х + 5х²) + 2х =
= 4 - х + 5х² + 2х =
= 5х² + х + 4.
в) х -(4 +3х — х²) + (2 — х²) =
= х - 4 - 3х + х² + 2 - х² =
= -2х - 2.
г) 5 + (2х² - х) — (4х² + 5 ) + х =
= 5 + 2х² - х - 4х² - 5 + х =
= -2х². Многочлен преобразуется в одночлен.