Реши уравнение x−8/ x+12 + x−12/ x+8 =0 . В ответе запиши произведение корней уравнения. (При необходимости ответ округли до сотых, при решении вычислять приближенное значение корней не нужно, при умножении воспользуйся свойством корня!) ответ: .
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Объяснение:
у=2х²-6х-2
наименьшее значение функции ищем с производных
первая производная даст нам критическую точку (точку минимума или максимума)
y'= 4x -6 = 2(2х - 3)
для поиска приравняем первую производную к нулю
2(2х-3)=0; х₁ - 3/2 - это критическая точка
значение функции в точке
у(3/2) = - 13/2
теперь надо понять минимум это или максимум
если вторая производная больше нуля, то это минимум
и наоборот
у" = (4х-6)' = 4
y(3/2) = 4 > 0 - это точка минимума и значение функции в этой точке будет
у = - 13/2
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.